SUPPORTING DOCUMENT
STORMWATER WORKSHEET

This submittal worksheet will help determine what onsite stormwater management and erosion control measures are required for your project. After a technical review of your application and this worksheet, additional information may be required in order to finish processing your permit.

All information in this worksheet is required for your permit application to be accepted.

→ STEP 1 – TOTAL DISTURBED AREA

On your site plan, show the edge of all ground and vegetation that will be disturbed by the project. Include ground and vegetation disturbed for (check all that apply):

- [] Wells
- [] Septic drainfields and tanks
- [] Structures, including areas disturbed by excavation stockpiling, and equipment compaction
- [] Onsite driveways and roads
- [] Offsite access roads, easement roads, or other hard surfaces created outside the building parcel as a result of this project
- [] Pasture
- [] Lawn, garden, and landscaped areas
- [] Construction parking, staging, storage, and stockpile areas
- [] Other cleared or graded areas of any kind

1. **Total Disturbed Area:** ____________ square feet

→ STEP 2 – TOTAL HARD SURFACE AREA (new and replaced)

Onsite hard surfaces:

2. Footprint of all structures to be constructed or replaced: ____________ square feet
3. Driveways and parking areas (gravel, paved, or permeable pavement): ____________ square feet
4. Sidewalks, patios, storage areas, walkways and other hard surfaces (gravel, paved, or permeable pavement): ____________ square feet
5. Total of lines 2, 3, and 4: ____________ square feet

Offsite hard surfaces:

6. Access roads, easement roads, driveway aprons, and other hard surfaces (gravel, paved, or permeable pavement) created outside the building parcel as a result of this project: ____________ square feet

Total Hard Surface Area:

7. Total of lines 5 and 6: ____________ square feet
STEP 3a – URBAN AREAS

Determine if your parcel is inside a Census Defined Urban Area or Urban Growth Area. Maps are available from a Community Development Permit Technician or at Kitsap County Parcel Search https://psearch.kitsapgov.com/webappa/ (click on “Layers”, then in the “Manage Layers” box choose the “Critical Drainage Areas” theme. You may turn layers on and off by clicking the check boxes.)

Check one of the following:

- □ 8. The parcel is inside a Census Urban Area or Urban Growth Area (yellow or orange on the map)
- □ 9. The parcel is not inside a Census Urban Area or Urban Growth Area

STEP 3b – CRITICAL DRAINAGE AREAS

Determine if your parcel is inside a mapped Critical Drainage Area. Maps are available from a Community Development Permit Technician or at Kitsap County Parcel Search https://psearch.kitsapgov.com/webappa/ (click on “Layers”, then in the “Manage Layers” box choose the “Critical Drainage Areas” theme. You may turn layers on and off by clicking the check boxes.)

Check one of the following:

- □ 10. The parcel is inside a mapped Critical Drainage Area (light green on the map)
- □ 11. The parcel is not inside a mapped Critical Drainage Area

STEP 3c – PROJECT TYPE

First, check one of the following:

- □ 12. The project is inside an urban area (from line 8)
 - AND the Total Hard Surface Area (from line 7) is 5,000 square feet or more.
- □ 13. The project is inside an urban area (from line 8)
 - AND the project will convert 2.5 acres (108,900 square feet) or more of native vegetation to pasture.
- □ 14. The project is inside an urban area (from line 8)
 - AND the project will convert 3/4 acre (32,670 square feet) or more to lawn, garden, or other landscaping.
- □ 15. The project is not inside an urban area (from line 9)
 - AND the parcel size is under 4.6 acres (200,000 sf)
 - AND the Total Hard Surface Area (from line 7) is 10,000 square feet or more.
- □ 16. The project is not inside an urban area (from line 9)
 - AND the parcel size is 4.6 acres or more (200,000 square feet)
 - AND the Total Hard Surface Area (from line 7) is over 5% of the parcel area.
- □ 17. The project will result in the grading or movement of 5,000 cubic yards (135,000 cubic feet) or more of earth.
- □ 18. None of the above apply.

Next, check one of the following:

- □ 19. Check here if you checked any of lines 12 – 17 above. Your project is classed as a **Large Project**.
- □ 20. Check here if you checked line 18 above. Your project is classed as a **Small Project**.
STEP 3d – CRITICAL AREAS

Determine if your parcel is inside a mapped Critical Area. Maps are available from a Community Development Permit Technician or at Kitsap County Parcel Search https://psearch.kitsapgov.com/webappa/ (click on “Layers”, then in the “Manage Layers” box choose the “Critical Areas” theme. You may turn layers on and off by clicking the check boxes.)

Check one of the following:

- ☐ 21. Any portion of the parcel **is within 200 feet** of a mapped Critical Area such as a waterbody, shoreline, wetland, hydric soils, FEMA flood hazard area, bald eagle buffer, or geological hazard (pink, green, blue, or patterned on the map).
- ☐ 22. Any portion of the parcel **is not within 200 feet** a mapped Critical Area such as a waterbody, shoreline, wetland, hydric soils, FEMA flood hazard area, bald eagle buffer, or geological hazard.

STEP 4 - MINIMUM REQUIREMENTS FOR NEW DEVELOPMENT

Indicate (highlight) on the flowchart below, the path that will determine the minimum stormwater requirements for your project.

(This flowchart is a simplified version of Tables 4.1 and 4.2 of the Kitsap County Stormwater Design Manual. It does not replace the requirements of Kitsap County Code 12.20. Applicants may, at their discretion, choose to use the BMP Performance Standard consistent with Table 4.2 on page 4-16 in Volume I of the Kitsap County Stormwater Design Manual in lieu of the BMP lists identified below.)

![Flowchart](image-url)
MINIMUM REQUIREMENTS FOR REDEVELOPMENT

Continued from the Previous Page

Is the Total Hard Surface Area (from line 7) 2,000 square feet or more OR is the Total Disturbed Area (from line 1) 7,000 square feet or more?

Yes

Minimum Requirements #1 through #5 apply to the new and replaced hard surfaces and the land disturbed. See BMP List 1 to select your BMPs.

No

Minimum Requirement #2 applies.

Next Question

Does the new hard surface area total 5,000 square feet or more OR does the project convert 3/4 acre of vegetation or more to lawn, garden, or other landscaping (from line 14) OR does the project convert 2.5 acres or more of native vegetation to pasture (from line 13)?

A

Yes

Does the new hard surface area total 10,000 square feet or more OR exceed 5% of the parcel area (whichever is greater)?

No

B

Next Question

Is the project inside or outside a Census Urban Area or Urban Growth Area (from line 8)?

Inside

Minimum Requirements #1 through #9 apply to the new hard surfaces and the converted vegetation areas. See BMP List 1 and List 2 to select your BMPs.

Outside

No

Next Question

Is the project within a Critical Drainage Area (from line 10) OR within 200 feet of a Critical Area (from line 21)?

No

No additional requirements. Go to Step 5.

Yes

Consult Kitsap DCD Stormwater for additional requirements that may apply.

Next Question

Is this a road related project?

Yes

Did you check “YES” to box A or B above?

No

Did you check line 12, 15, or 16 AND does the value of the proposed improvements – including interior improvements – exceed 50% of the assessed value (or replacement value) of the existing site improvements?

Yes

Minimum Requirements #1 through #9 apply to the new and replaced hard surfaces and the converted vegetation areas. See BMP List 2 and List 3 to select your BMPs.

No

Is the new hard surface area 50% or larger than the existing hard surface area within the project limits?
STEP 5 – IDENTIFY THE DRAINAGE REVIEW REQUIRED

Start Here
Is the project classed as a Small Project (from line 20)
AND is a single family residential project
AND only Minimum Requirement 2 applies (from Step 4)
AND the project is not in a critical drainage area (from line 11)?

Yes

No additional drainage review
Basic erosion and sediment control measures ARE required.
The Site Assessment and Planning Packet is NOT required.

No

Is the project classed as a Small Project (from line 20)
AND is a single family residential project
AND only Minimum Requirements #1 through #5 apply (from Step 4)
AND is located outside of critical areas and critical area buffers?

Yes

Simplified Drainage Review
Drainage is reviewed as part of the building permit.
A professional engineer is not required

No

Simplified Drainage Review – Engineered
Drainage is reviewed as part of the building permit.
A professional engineer is required.
Additional building permit review fees are required.

No

Is the project classed as a Small Project (from line 20)
AND is a single family residential project
AND is located within a critical area or critical area buffer?

Yes

Abbreviated Drainage Review
Drainage is reviewed as part of a Site Development Activity Permit.
A professional engineer is not required

No

Is the project classed as a Small Project (from line 20)
AND is non-residential
AND only Minimum Requirements #1 through #5 apply (from Step 4)
AND is located outside of critical areas or critical area buffers?

Yes

No

Is the project a grading-only project that will move between 150 and 5,000 cubic yards of material
AND is located outside of critical areas or critical area buffers?

Yes

Continue to the next page
STEP 6 – COMPLETE THE SITE ASSESSMENT AND PLANNING PACKET

Not required if “No Additional Drainage Review” is checked in Step 5.
All Best Management Practices (BMPs) are considered feasible until demonstrated otherwise. They must be considered in the order shown on BMP Lists 1, 2, or 3.

Use this worksheet to document the reasons why specific BMPs were not selected for use. A BMP may be considered infeasible based any on the conditions listed below. Cost is not a factor for determining infeasibility.

The infeasibility criteria listed below summarize, for convenience, the detailed criteria in the 2016 Kitsap County Stormwater Design Manual and the 2014 Stormwater Manual for Western Washington. Additional infeasibility criteria in those manuals may apply to your specific situation. References to the detailed criteria in both manuals are shown for each BMP below.

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil Management Plan for Post Construction Soil Quality and Depth</td>
<td>2</td>
</tr>
<tr>
<td>Downspout Full Infiltration</td>
<td>2</td>
</tr>
<tr>
<td>Full Dispersion</td>
<td>3</td>
</tr>
<tr>
<td>Bioretention and Rain Gardens</td>
<td>3</td>
</tr>
<tr>
<td>Permeable Pavement</td>
<td>5</td>
</tr>
<tr>
<td>Downspout Dispersion</td>
<td>7</td>
</tr>
<tr>
<td>Concentrated Flow Dispersion</td>
<td>8</td>
</tr>
<tr>
<td>Perforated Stub-out Connection</td>
<td>9</td>
</tr>
<tr>
<td>Sheet Flow Dispersion</td>
<td>10</td>
</tr>
</tbody>
</table>
Soil Management Plan for Post-Construction Soil Quality and Depth

Infeasibility Criteria

- **This BMP is considered infeasible on portions of the site with till soils and slopes greater than 33%.**

References:
- See Kitsap County Brochure #57 and Supporting Document - Soil Management Plan for BMP T5.13.
- Also see 2016 Kitsap County Stormwater Design Manual, Volume II, Section 5.4.1, Page 5-22.
- Also see 2014 Stormwater Management Manual for Western Washington, Volume 5, Page 5-8, BMP T5.13.

Downspout Full Infiltration

- **A professional geotechnical evaluation recommends against infiltration due to erosion, slope failure, or flooding concerns.**

- **A professional evaluation finds the only area available for infiltration would threaten the safety or reliability of underground utilities, underground storage tanks, structures, road or parking lot surfaces, or subgrades.**

- **A professional evaluation finds the only area available for infiltration does not allow for a safe overflow pathway.**

- **A professional evaluation finds that infiltration would threaten shoreline structures such as bulkheads.**

- **A professional evaluation finds that infiltration would threaten existing below-grade basements.**

- **The site does not have outwash or loam soils.**

- **Horizontal setbacks cannot be met.**

- **There is not at least 1-foot of permeable soil between the bottom of the bioretention area and the seasonal high water table or impermeable layer (for drainage areas **less than** 5,000 square feet of pollution generating hard surface, and 10,000 square feet of hard surface, and 3/4 acre of pervious surface).**

- **There is not at least 3-feet of permeable soil between the final grade and the seasonal high water table or impermeable layer (for drainage areas **over** 5,000 square feet of pollution generating hard surface, OR 10,000 square feet of hard surface, OR 3/4 acre of pervious surface).**

References:
- See Kitsap County Brochure #53.
- Also see 2016 Kitsap County Stormwater Design Manual, Volume II,
BIORETENTION and RAIN GARDENS

Infeasibility Criteria
(Check all that apply)

- A professional geotechnical evaluation recommends against bioretention due to erosion, slope failure, or flooding concerns.
- A professional evaluation finds the only area available for bioretention would threaten the safety or reliability of underground utilities, underground storage tanks, structures, road or parking lot surfaces, or subgrades.
- A professional evaluation finds the only area available for bioretention does not allow for a safe overflow pathway.
- A professional evaluation finds that bioretention would threaten shoreline structures such as bulkheads.
- A professional evaluation bioretention would threaten existing structures.

Backup Information from Applicant

FULL DISPERSION

Infeasibility Criteria
(Check all that apply)

- A professional geotechnical evaluation recommends against dispersion due to erosion, slope failure, or flooding concerns.
- The only available dispersion flow path is within 10 feet uphill of a septic system or drain field.
- The only available dispersion flow path is within an erosion hazard or a landslide hazard area.
- The only available dispersion flow path is in a critical area, steep slope (over 15%), or setback to a steep slope.
- The only available dispersion flow path is within 100 feet uphill of a contaminated site or abandoned landfill.
- The minimum 100-foot flow path through native vegetation cannot be met.
- A 65 to 10 ratio of native vegetation area to impervious area is unachievable.

Backup Information from Applicant
below-grade basements.

- A professional evaluation indicates that bioretention with an underdrain will likely direct infiltrated water to a nutrient sensitive waterbody.

- Ground water modeling indicates bioretention will likely alter the movement of pollutants in groundwater.

- Horizontal setbacks cannot be met.

- There is not at least 1-foot of permeable soil between the bottom of the bioretention area and the seasonal high water table or impermeable layer (for drainage areas less than 5,000 square feet of pollution generating hard surface, and 10,000 square feet of hard surface, and 3/4 acre of pervious surface).

- There is not at least 3-feet of permeable soil between the final grade and the seasonal high water table or impermeable layer (for drainage areas over 5,000 square feet of pollution generating hard surface, OR 10,000 square feet of hard surface, OR 3/4 acre of pervious surface).

- Bioretention is not compatible with the surrounding drainage system as determined by Kitsap County DCD (e.g., where the project drains to an existing approved stormwater collection system).

- The site cannot be reasonably designed to locate bioretention on slopes less than 8%.

Bioretention shall not be used:

- Within 100 feet of a drinking water well or spring.

- Within 30 feet uphill or 10 feet downhill of a residential septic drainfield.

- Within 10 feet of structures.

- Within 50 feet from the top of slopes that are greater than 20% and have over 10 feet of vertical relief.

- Within 10 feet of surface contaminated soils or 100 feet of deep contaminated soils.

- Within 100 feet of a closed or active landfill.

- Within 10 feet of an underground storage tank and connecting underground pipes when the size of the tank is under 1,100 gallons.

- Within 100 feet of an underground storage tank and connecting underground pipes when the tank is over 1,100 gallons.

- Where field testing indicates potential bioretention/rain garden sites have a measured (a.k.a., initial) native soil saturated hydraulic conductivity less than 0.30 inches per hour.

References:

- Also see 2016 Kitsap County Stormwater Design Manual, Volume II, Section 5.4.6, Page 5-33.
- Also see 2014 Stormwater Management Manual for Western Washington, Volume 5, Page 5-12, BMP T5.14A.
- Also see 2014 Stormwater Management Manual for Western Washington, Volume 5, Page 5-13, BMP T5.14B.

PERMEABLE PAVEMENT

<table>
<thead>
<tr>
<th>Infeasibility Criteria (Check all that apply)</th>
<th>Backup Information from Applicant</th>
</tr>
</thead>
<tbody>
<tr>
<td>□ A professional evaluation finds that infiltration or ponded water below permeable pavement would compromise adjacent impervious pavement.</td>
<td></td>
</tr>
<tr>
<td>□ A professional geotechnical evaluation recommends against dispersion due to erosion, slope failure, or flooding concerns.</td>
<td></td>
</tr>
<tr>
<td>□ A professional evaluation finds that infiltration below permeable pavement would threaten existing below-grade basements.</td>
<td></td>
</tr>
<tr>
<td>□ A professional evaluation finds that infiltration below permeable pavement would threaten existing utilities or road subgrades.</td>
<td></td>
</tr>
<tr>
<td>□ A professional evaluation finds that permeable pavement would cause fill soils to become unstable when saturated.</td>
<td></td>
</tr>
<tr>
<td>□ A professional evaluation finds that permeable pavement cannot support heavy loads in areas with industrial activity.</td>
<td></td>
</tr>
<tr>
<td>□ A professional evaluation finds that infiltration from permeable pavement would threaten shoreline structures such as bulkheads.</td>
<td></td>
</tr>
<tr>
<td>□ Areas with steep slopes where water within the aggregate base layer or at the subgrade surface cannot be controlled by detention structures and may cause erosion or structural failure.</td>
<td></td>
</tr>
<tr>
<td>□ Areas with steep slopes where surface runoff velocity may prevent adequate infiltration.</td>
<td></td>
</tr>
<tr>
<td>□ Pavement is within 100 feet of a drinking water well or spring.</td>
<td></td>
</tr>
<tr>
<td>□ Pavement is within 30 feet uphill or 10 feet downhill of a residential septic drainfield.</td>
<td></td>
</tr>
<tr>
<td>□ The seasonal high water table or an impermeable layer would create saturated conditions within 1-foot of the bottom of the lowest gravel base course.</td>
<td></td>
</tr>
<tr>
<td>□ Subgrade slopes exceed 5%.</td>
<td></td>
</tr>
<tr>
<td>□ Pavement is within 50 feet of the top of a slope greater than 20%.</td>
<td></td>
</tr>
<tr>
<td>□ Pavement is within 10 feet of surface contaminated soils or 100 feet of deep contaminated soils.</td>
<td></td>
</tr>
<tr>
<td>□ Ground water modeling indicates infiltration will likely alter the</td>
<td></td>
</tr>
</tbody>
</table>
movement of pollutants in groundwater.

☐ The pavement is in an area likely to have long term sediment deposition after construction (e.g., construction and landscaping material yards).

☐ The pavement is downhill of steep, erosion prone slopes that are likely to deposit sediment on the pavement.

☐ The site cannot be designed for porous asphalt surfaces at less than 5% slope, pervious concrete surfaces at less than 10% slope, or permeable paver surfaces at less than 12% slope.

☐ A professional evaluation finds that soils below a pollution-generating permeable pavement (e.g., road, parking lot) do not meet the soil suitability criteria to provide treatment.

☐ A professional evaluation finds that underlying soils are unsuitable to support traffic loads when saturated.

☐ The paved surface has an ADT exceeding 400 vehicles per day.

☐ The paved surface exceeds “very low truck traffic” (no through truck traffic, weekly utility truck traffic).

☐ The surface is subject to industrial activity incompatible with permeable surfaces.

☐ The surface is subject to pollutant spills, such as at gas stations, truck stops, and industrial chemical storage sites.

☐ Field testing indicates soils have a measured initial infiltration rate less than 0.3 inches per hour.

☐ The site is contaminated or an abandoned landfill.

☐ The pavement would be within 10 feet of an underground petroleum, chemical, or waste storage tank or underground connecting pipes.

References:

- See 2016 Kitsap County Stormwater Design Manual, Volume II, Section 5.4.8, Page 5-38.

- Also see 2014 Stormwater Management Manual for Western Washington, Volume 5, Page 5-15, BMP T5.15.

DOWNSPOUT DISPERSION

<table>
<thead>
<tr>
<th>Infeasibility Criteria</th>
<th>Backup Information from Applicant</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Check all that apply)</td>
<td></td>
</tr>
</tbody>
</table>

☐ The flow path cannot be properly vegetated.

☐ A professional geotechnical evaluation recommends against dispersion due to erosion, slope failure, or flooding concerns.

☐ The only available dispersion flow path is within 10 feet uphill of a
The only available dispersion flow path is within an erosion hazard or a landslide hazard area.

The only available dispersion flow path is in a critical area, steep slope (over 15%), or setback to a steep slope.

The only available dispersion flow path is within 100 feet uphill of a contaminated site or abandoned landfill.

For dispersion trenches:

- The minimum dispersion trench length cannot be met (10 feet of trench for every 700 square feet of drainage area).
- The minimum 25-foot flow path for dispersion trenches cannot be met.
- A vegetated flow path of 50 feet between the trench and a slope over 15% cannot be met.

For splash block dispersion:

- The minimum 50-foot flow path for splash blocks cannot be met.
- The drainage area to any splash block exceeds 700 square feet.

References:

- See 2016 Kitsap County Stormwater Design Manual, Volume II, Section 5.4.4, Page 5-27.
- Also see 2014 Stormwater Management Manual for Western Washington, Volume 3, Section 3.1.2, Page 3-11, BMP T5.10B.

<table>
<thead>
<tr>
<th>Infeasibility Criteria</th>
<th>Backup Information from Applicant</th>
</tr>
</thead>
<tbody>
<tr>
<td>A professional geotechnical evaluation recommends against dispersion due to erosion, slope failure, or flooding concerns.</td>
<td></td>
</tr>
<tr>
<td>The only available dispersion flow path is within 10 feet uphill of a septic system or drain field.</td>
<td></td>
</tr>
<tr>
<td>The only available dispersion flow path is within an erosion hazard or a landslide hazard area.</td>
<td></td>
</tr>
<tr>
<td>The only available dispersion flow path is in a critical area, steep slope (over 15%), or setback to a steep slope.</td>
<td></td>
</tr>
<tr>
<td>The only available dispersion flow path is within 100 feet uphill of a contaminated site or abandoned landfill.</td>
<td></td>
</tr>
<tr>
<td>Horizontal setbacks cannot be met.</td>
<td></td>
</tr>
<tr>
<td>Dispersion and flow path requirements cannot be met:</td>
<td></td>
</tr>
<tr>
<td>• A minimum 10-foot dispersion trench followed by a 25-foot minimum flow path,</td>
<td></td>
</tr>
<tr>
<td>OR a 3-foot rock pad with a minimum 50-foot minimum flow</td>
<td></td>
</tr>
</tbody>
</table>
• A maximum of 700 square feet of drainage area to any dispersion device.

References:
- See 2016 Kitsap County Stormwater Design Manual, Volume II, Section 5.4.4, Page 5-27.
- Also see 2014 Stormwater Management Manual for Western Washington, Volume 5, Page 5-3, BMP T5.11.

PERFORATED STUB-OUT CONNECTION

<table>
<thead>
<tr>
<th>Infeasibility Criteria</th>
<th>Backup Information from Applicant</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Check all that apply)</td>
<td></td>
</tr>
</tbody>
</table>

- □ A professional geotechnical evaluation recommends against infiltration due to erosion, slope failure, or flooding concerns.
- □ A professional evaluation finds the only area available for infiltration would threaten the safety or reliability of underground utilities, underground storage tanks, structures, road or parking lot surfaces, or subgrades.
- □ A professional evaluation finds the only area available for infiltration does not allow for a safe overflow pathway.
- □ A professional evaluation finds the infiltration pathway would intersect a septic drainfield or reserve area.
- □ A professional evaluation finds that infiltration would threaten shoreline structures such as bulkheads.
- □ A professional evaluation finds that infiltration would threaten existing below-grade basements.
- □ Horizontal setbacks cannot be met.
- □ There is not a minimum of 1-foot of permeable soil between the bottom of the perforated pipe and the seasonal high water table or impermeable layer.
- □ The only location for the perforated pipe is under impervious or compacted (e.g., driveways, parking areas) surfaces.
- □ A minimum of 10 feet of perforated pipe per 5,000 square foot of contributing roof area is not possible.
- □ The only location for the perforated pipe is on slopes of 20% or greater.

References:
- See 2016 Kitsap County Stormwater Design Manual, Volume II, Section 5.4.7, Page 5-36.
- Also see 2014 Stormwater Management Manual for Western Washington, Volume 3, Section 3.1.3, Page 3-17, BMP T5.10C.
<table>
<thead>
<tr>
<th>Infeasibility Criteria</th>
<th>Backup Information from Applicant</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐ A professional geotechnical evaluation recommends against dispersion due to erosion, slope failure, or flooding concerns.</td>
<td></td>
</tr>
<tr>
<td>☐ The only available dispersion flow path is within 10 feet uphill of a septic system or drain field.</td>
<td></td>
</tr>
<tr>
<td>☐ For flat to moderately sloped areas, a minimum 10-foot wide vegetated flow path is not possible.</td>
<td></td>
</tr>
<tr>
<td>☐ For variably sloped areas, a minimum 25-foot wide vegetated flow path is not possible.</td>
<td></td>
</tr>
<tr>
<td>☐ The only available dispersion flow path is within an erosion hazard or a landslide hazard area.</td>
<td></td>
</tr>
<tr>
<td>☐ The only available dispersion flow path is in a critical area, steep slope (over 15%), or setback to a steep slope.</td>
<td></td>
</tr>
<tr>
<td>☐ The only available dispersion flow path is within 100 feet uphill of a contaminated site or abandoned landfill.</td>
<td></td>
</tr>
<tr>
<td>☐ Positive drainage is not possible.</td>
<td></td>
</tr>
<tr>
<td>☐ The drainage area has a slope of 15% or more.</td>
<td></td>
</tr>
</tbody>
</table>

References:

- See 2016 Kitsap County Stormwater Design Manual, Volume II, Section 5.4.4, Page 5-27.
- Also see 2014 Stormwater Management Manual for Western Washington, Volume 5, Page 5-6, BMP T5.12.
STORMWATER BEST MANAGEMENT PRACTICE (BMP) LIST #1
ON-SITE STORMWATER MANAGEMENT
For Projects Triggering Minimum Requirements 1 through 5

Applicants may, at their discretion, use the BMP Performance Standard consistent with Table 4.2 on page 4-16 in Volume I of the Kitsap County Stormwater Design Manual in lieu of the BMPs.

FOR ALL PROJECTS
A Construction Stormwater Pollution Prevention Plan (SWPPP) is required. See Kitsap County Brochure #51 and Supporting Document - Stormwater Pollution Prevention Plan (SWPPP) Narrative.

FOR ALL LAWNS, PLANTING BEDS, AND OTHER LANDSCAPED AREAS
Soil amendment is required for Post Construction Soil Quality and Depth. See Kitsap County Brochure #57 and Post-Construction Soil Quality and Depth Worksheet.

FOR ROOFS
Consider each BMP in the order shown. Use the first BMP that is feasible.

STEP 1. Choose one of the following:
- Full Dispersion OR
- Downspout Full Infiltration System

ONLY if Step 1 is infeasible, proceed to Step 2.

STEP 2. Choose one of the following:
- Rain Garden OR
- Bioretention

ONLY if Step 2 is infeasible, proceed to Step 3.

STEP 3. Choose the following:
- Downspout Dispersion System

ONLY if Step 3 is infeasible, proceed to Step 4.

STEP 4. Choose the following:
- Perforated Stub-out Connection

ONLY if Step 4 is infeasible, proceed to Step 5.

STEP 5. If all steps above are infeasible:
No other BMP is required for roofs.
How do I know if a BMP is infeasible?

All BMPs are initially considered feasible until demonstrated otherwise. They must be considered in the order shown above.

A BMP may be considered infeasible based on site conditions such as steep slopes, shallow water table, high shorelines, or unsuitable soils. A BMP may also be infeasible if parcel size, setbacks, or other site regulations make BMP installation or dispersion areas impossible.

See the BMP Infeasibility Worksheet, Appendix H of the Kitsap County Stormwater Design Manual, and the references below for specific information on each BMP.

Cost is not a factor for determining infeasibility.

The Kitsap County Stormwater Design Manual and the Stormwater Management Manual for Western Washington both list specific applications, limitations, infeasibility criteria, and design guidelines for each BMP.
Where can I learn about the BMPs?

Bioretention
• See 2016 Kitsap County Stormwater Design Manual, Volume II, Section 5.4.6, Page 5-33.
• Also see 2014 Stormwater Management Manual for Western Washington, Volume 5, Page 5-13, BMP T5.14B.

Downspout Dispersion System
• See 2016 Kitsap County Stormwater Design Manual, Volume II, Section 5.4.4, Page 5-27.
• Also see 2014 Stormwater Management Manual for Western Washington, Volume 3, Section 3.1.2, Page 3-11, BMP T5.10B.

Downspout Full Infiltration System
• See Kitsap County Brochure #53.
• Also see 2016 Kitsap County Stormwater Design Manual, Volume II, Section 5.4.16, Page 5-33.
• Also see 2014 Stormwater Management Manual for Western Washington, Volume 3, Section 3.1.1, Page 3-4, BMP T5.10A.

Full Dispersion
• See Kitsap County Brochure #52.
• Also see 2016 Kitsap County Stormwater Design Manual, Volume II, Section 5.4.4, Page 5-27.
• Also see 2014 Stormwater Management Manual for Western Washington, Volume 5, Page 5-33, BMP T5.30.

Perforated Stub-out Connection
• See 2016 Kitsap County Stormwater Design Manual, Volume II, Section 5.4.7, Page 5-36.
• Also see 2014 Stormwater Management Manual for Western Washington, Volume 3, Section 3.1.3, Page 3-17, BMP T5.10C.

Permeable Pavement
• See 2016 Kitsap County Stormwater Design Manual, Volume II, Section 5.4.8, Page 5-38.
• Also see 2014 Stormwater Management Manual for Western Washington, Volume 5, Page 5-15, BMP T5.15.

Rain Garden
• See 2016 Kitsap County Stormwater Design Manual, Volume II, Section 5.4.5, Page 5-31.
• Also see 2014 Stormwater Management Manual for Western Washington, Volume 5, Page 5-12, BMP T5.14A.

Sheet Flow Dispersion
• See 2016 Kitsap County Stormwater Design Manual, Volume II, Section 5.4.4, Page 5-27.
• Also see 2014 Stormwater Management Manual for Western Washington, Volume 5, Page 5-6, BMP T5.12.

Soil Amendment
• See Kitsap County Brochure #57 and Post-Construction Soil Quality and Depth Worksheet.
• Also see 2016 Kitsap County Stormwater Design Manual, Volume II, Section 5.4.1, Page 5-22.
• Also see 2014 Stormwater Management Manual for Western Washington, Volume 5, Page 5-8, BMP T5.13.
STORMWATER BEST MANAGEMENT PRACTICE (BMP) LIST #2

ON-SITE STORMWATER MANAGEMENT

For Projects Triggering Minimum Requirements 1 through 9
Inside Census-Defined Urban Areas on Parcels Less Than 5 Acres
OR Inside Urban Growth Areas

Applicants may, at their discretion, use the BMP Performance Standard consistent with Table 4.2 on page 4-16 in Volume I of the Kitsap County Stormwater Design Manual in lieu of the BMPs identified below.

FOR ALL PROJECTS
A Construction Stormwater Pollution Prevention Plan (SWPPP) is required.
See Kitsap County Brochure #51 and Supporting Document - Stormwater Pollution Prevention Plan (SWPPP) Narrative.

FOR ALL LAWNS, PLANTING BEDS, AND OTHER LANDSCAPED AREAS
Soil amendment is required for Post Construction Soil Quality and Depth.
See Kitsap County Brochure #57 and Post Construction Soil Quality and Depth Worksheet.

FOR ROOFS
Consider each BMP in the order shown.
Use the first BMP that is feasible.

STEP 1. Choose one of the following:
Full Dispersion OR Downspout Full Infiltration System

ONLY if Step 1 is infeasible, proceed to Step 2.

STEP 2. Choose the following:
Bioretention

ONLY if Step 2 is infeasible, proceed to Step 3.

STEP 3. Choose the following:
Downspout Dispersion System

ONLY if Step 3 is infeasible, proceed to Step 4.

STEP 4. Choose the following:
Perforated Stub-out Connection

ONLY if Step 4 is infeasible, proceed to Step 5.

STEP 5. If all steps above are infeasible:
No other BMP is required for roofs.
How do I know if a BMP is infeasible?

All BMPs are initially considered feasible until demonstrated otherwise. They must be considered in the order shown above.

A BMP may be considered infeasible based on site conditions such as steep slopes, shallow water table, high shorelines, or unsuitable soils. A BMP may also be infeasible if parcel size, setbacks, or other site regulations make BMP installation or dispersion areas impossible. See the BMP Infeasibility Worksheet, Appendix H of the Kitsap County Stormwater Design Manual, and the references below for specific information on each BMP.

Cost is not a factor for determining infeasibility.

The Kitsap County Stormwater Design Manual and the Stormwater Management Manual for Western Washington both list specific applications, limitations, infeasibility criteria, and design guidelines for each BMP.
<table>
<thead>
<tr>
<th>Where can I learn about the BMPs?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bioretention</td>
</tr>
<tr>
<td>• See 2016 Kitsap County Stormwater Design Manual, Volume II, Section 5.4.6, Page 5-33.</td>
</tr>
<tr>
<td>• Also see 2014 Stormwater Management Manual for Western Washington, Volume 5, Page 5-13, BMP T5.14B.</td>
</tr>
<tr>
<td>Concentrated Flow Dispersion</td>
</tr>
<tr>
<td>• See 2016 Kitsap County Stormwater Design Manual, Volume II, Section 5.4.4, Page 5-27.</td>
</tr>
<tr>
<td>• Also see 2014 Stormwater Management Manual for Western Washington, Volume 5, Page 5-3, BMP T5.11.</td>
</tr>
<tr>
<td>Downspout Dispersion System</td>
</tr>
<tr>
<td>• See 2016 Kitsap County Stormwater Design Manual, Volume II, Section 5.4.4, Page 5-27.</td>
</tr>
<tr>
<td>• Also see 2014 Stormwater Management Manual for Western Washington, Volume 3, Section 3.1.2, Page 3-11, BMP T5.10B.</td>
</tr>
<tr>
<td>Downspout Full Infiltration System</td>
</tr>
<tr>
<td>• See Kitsap County Brochure #53.</td>
</tr>
<tr>
<td>• Also see 2016 Kitsap County Stormwater Design Manual, Volume II, Section 5.4.16, Page 5-53.</td>
</tr>
<tr>
<td>• Also see 2014 Stormwater Management Manual for Western Washington, Volume 3, Section 3.1.1, Page 3-4, BMP T5.10A.</td>
</tr>
<tr>
<td>Full Dispersion</td>
</tr>
<tr>
<td>• See Kitsap County Brochure #52.</td>
</tr>
<tr>
<td>• Also see 2016 Kitsap County Stormwater Design Manual, Volume II, Section 5.4.4, Page 5-27.</td>
</tr>
<tr>
<td>• Also see 2014 Stormwater Management Manual for Western Washington, Volume 5, Page 5-33, BMP T5.30.</td>
</tr>
<tr>
<td>Perforated Stub-out Connection</td>
</tr>
<tr>
<td>• See 2016 Kitsap County Stormwater Design Manual, Volume II, Section 5.4.7, Page 5-36.</td>
</tr>
<tr>
<td>• Also see 2014 Stormwater Management Manual for Western Washington, Volume 3, Section 3.1.3, Page 3-17, BMP T5.10C.</td>
</tr>
<tr>
<td>Permeable Pavement</td>
</tr>
<tr>
<td>• See 2016 Kitsap County Stormwater Design Manual, Volume II, Section 5.4.8, Page 5-38.</td>
</tr>
<tr>
<td>• Also see 2014 Stormwater Management Manual for Western Washington, Volume 5, Page 5-15, BMP T5.15.</td>
</tr>
<tr>
<td>Sheet Flow Dispersion</td>
</tr>
<tr>
<td>• See 2016 Kitsap County Stormwater Design Manual, Volume II, Section 5.4.4, Page 5-27.</td>
</tr>
<tr>
<td>• Also see 2014 Stormwater Management Manual for Western Washington, Volume 5, Page 5-6, BMP T5.12.</td>
</tr>
<tr>
<td>Soil Amendment</td>
</tr>
<tr>
<td>• See Kitsap County Brochure #57 and Post-Construction Soil Quality and Depth Worksheet.</td>
</tr>
<tr>
<td>• Also see 2016 Kitsap County Stormwater Design Manual, Volume II, Section 5.4.1, Page 5-22.</td>
</tr>
<tr>
<td>• Also see 2014 Stormwater Management Manual for Western Washington, Volume 5, Page 5-8, BMP T5.13.</td>
</tr>
</tbody>
</table>
STORMWATER BEST MANAGEMENT PRACTICE (BMP) LIST #3
ON-SITE STORMWATER MANAGEMENT
For Projects Triggering Minimum Requirements 1 through 9
Outside Census-Defined Urban Areas and
Outside Urban Growth Areas

Applicants may, at their discretion, use the BMP Performance Standard consistent with Table 4.2 on page 4-16 in Volume I of the Kitsap County Stormwater Design Manual in lieu of the BMPs identified below.

FOR ALL PROJECTS
A Construction Stormwater Pollution Prevention Plan (SWPPP) is required.
See Kitsap County Brochure #51 and Supporting Document - Stormwater Pollution Prevention Plan (SWPPP) Narrative.

FOR ALL LAWNS, PLANTING BEDS, AND OTHER LANDSCAPED AREAS
Soil amendment is required for
Post Construction Soil Quality and Depth.
See Kitsap County Brochure #57 and Post-Construction Soil Quality and Depth Worksheet.

FOR ROOFS
Consider each BMP in the order shown.
Use the first BMP that is feasible.

STEP 1. Choose one of the following:
Downspout Full Infiltration System

ONLY if Step 1 is infeasible, proceed to Step 2.

STEP 2. Choose the following:
Bioretention

ONLY if Step 2 is infeasible, proceed to Step 3.

STEP 3. Choose the following:
Downspout Dispersion System

ONLY if Step 3 is infeasible, proceed to Step 4.

STEP 4. Choose the following:
Perforated Stub-out Connection

ONLY if Step 4 is infeasible, proceed to Step 5.

STEP 5. If all steps above are infeasible:
No other BMP is required for roofs.
FOR ALL OTHER HARD SURFACES
(including but not limited to gravel or paved roads, driveways, sidewalks, parking areas, patios, and storage areas)

Consider each BMP in the order shown. Use the first BMP that is feasible.

STEP 1. Choose the following:
Permeable Pavement

STEP 2. Choose the following:
Bioretention

STEP 3. Choose one of the following:
Sheet Flow Dispersion OR Concentrated Flow Dispersion

STEP 4. If all steps above are infeasible:
No other BMP is required for other hard surfaces.

How do I know if a BMP is infeasible?

All BMPs are initially considered feasible until demonstrated otherwise. They must be considered in the order shown above.

A BMP may be considered infeasible based on site conditions such as steep slopes, shallow water table, high shorelines, or unsuitable soils. A BMP may also be infeasible if parcel size, setbacks, or other site regulations make BMP installation or dispersion areas impossible. See the BMP Infeasibility Worksheet, Appendix H of the Kitsap County Stormwater Design Manual, and the references below for specific information on each BMP.

Cost is not a factor for determining infeasibility.

The Kitsap County Stormwater Design Manual and the Stormwater Management Manual for Western Washington both list specific applications, limitations, infeasibility criteria, and design guidelines for each BMP.
Where can I learn about the BMPs?

Bioretention
• See 2016 Kitsap County Stormwater Design Manual, Volume II, Section 5.4.6, Page 5-33.
• Also see 2014 Stormwater Management Manual for Western Washington, Volume 5, Page 5-13, BMP T5.14B.

Concentrated Flow Dispersion
• See 2016 Kitsap County Stormwater Design Manual, Volume II, Section 5.4.4, Page 5-27.
• Also see 2014 Stormwater Management Manual for Western Washington, Volume 5, Page 5-3, BMP T5.11.

Downspout Dispersion System
• See 2016 Kitsap County Stormwater Design Manual, Volume II, Section 5.4.4, Page 5-27.
• Also see 2014 Stormwater Management Manual for Western Washington, Volume 3, Section 3.1.2, Page 3-11, BMP T5.10B.

Downspout Full Infiltration System
• See Kitsap County Brochure #53.
• Also see 2016 Kitsap County Stormwater Design Manual, Volume II, Section 5.4.16, Page 5-53.
• Also see 2014 Stormwater Management Manual for Western Washington, Volume 3, Section 3.1.1, Page 3-4, BMP T5.10A.

Perforated Stub-out Connection
• See 2016 Kitsap County Stormwater Design Manual, Volume II, Section 5.4.7, Page 5-36.
• Also see 2014 Stormwater Management Manual for Western Washington, Volume 3, Section 3.1.3, Page 3-17, BMP T5.10C.

Permeable Pavement
• See 2016 Kitsap County Stormwater Design Manual, Volume II, Section 5.4.8, Page 5-38.
• Also see 2014 Stormwater Management Manual for Western Washington, Volume 5, Page 5-15, BMP T5.15.

Sheet Flow Dispersion
• See 2016 Kitsap County Stormwater Design Manual, Volume II, Section 5.4.4, Page 5-27.
• Also see 2014 Stormwater Management Manual for Western Washington, Volume 5, Page 5-6, BMP T5.12.

Soil Amendment
• See Kitsap County Brochure #57 and Post-Construction Soil Quality and Depth Worksheet.
• Also see 2016 Kitsap County Stormwater Design Manual, Volume II, Section 5.4.1, Page 5-22.
• Also see 2014 Stormwater Management Manual for Western Washington, Volume 5, Page 5-8, BMP T5.13.
INSTRUCTIONS FOR COMPLETING THIS PACKET:

☑ This packet is to be completed during preliminary site assessment and planning, and shall be submitted with the preliminary plan application.

☑ See Appendix A for definitions of terms used in this packet.

☑ See Volume II, Chapter 1 for submittal requirements.

THE GOALS OF THIS PACKET ARE TO:

☑ Provide basic project information.

☑ Document how the project proposes to minimize:
 - Impervious surfaces
 - Loss of native vegetation
 - Stormwater runoff

☑ Demonstrate how the project proposes to comply with Minimum Requirement #5 – On-site Stormwater Management.

PROJECT

Permit No. (provided by County) _________
Project Address or Project Boundaries: ___
Parcel No. __________
Project Type: ☐ Residential ☐ Commercial ☐ Industrial ☐ Public
Project is: ☐ New or redevelopment ☐ Remodel ☐ Retrofit ☐ Combination (describe below)
Project Description:

APPLICANT INFORMATION

Company/Agency/Owner: __

Contact Person:___

Address:___

Phone:_______________________ Email:_____________________________________

Signature/Date: __
Develop a composite site map as you collect site information in Section C. See the example below. This map must be submitted as part of the completed packet, and will be used as a basis for the site design.

EXAMPLE
Use this portion of the packet to document the site inventory and analysis. For additional information on each portion of the analysis, refer to Volume I, Chapter 2 in the Kitsap Stormwater Design Manual.

1. PROJECT BOUNDARIES AND STRUCTURES
 - Identify/Delineate on map:
 - Project site boundaries (limits of disturbance)
 - Existing and proposed buildings
 - Required infiltration setbacks (please describe)
 - Location and extent of proposed foundations and footing drains

2. SOILS
 - Characterize existing soil type(s):
 - What is the depth to seasonal high groundwater (feet)?
 - Is bedrock present? Yes No
 - If yes, depth (feet):
 - What is the long-term design native soil infiltration rate (inch/hour):
 - Identify source(s) of information used:

3. CRITICAL AREAS
 - Identify and map any Critical Areas located on the project site and within the project vicinity:
 - Streams:
 - Wetlands:
 - Floodplains:
 - Riparian areas:
 - Critical aquifer recharge areas:
 - Geologically hazardous areas:
 - Other:

4. DEWATERING
 - Provide estimated groundwater dewatering flow rates during construction:

5. TOPOGRAPHY
 - Describe site topography and slopes:
 - Identify/Delineate on map:
 - Areas of flat (≤5%), moderate (5%-15%), and steep (≥15%) slopes
 - Closed depressions

See the County’s Critical Areas Ordinance website for more information [http://www.kitsapgov.com/dcd/lu_env/cao/cao.htm]
6. HYDROLOGIC PATTERNS & FEATURES

☐ Identify/Delineate on map:
 ☐ Sub-basin(s)
 ☐ Existing drainage swales and ditches (please describe) ________________________________
 ☐ Location(s) of any natural seeps or springs (please describe) _________________________
 ☐ Existing discharge location(s) from each sub-basin and overall project site: (please describe)

 ☐ Signs of existing erosion (please describe) ________________________________
 ☐ Other: ________________________________

7. VEGETATION

☐ Native vegetation type(s): ________________________________
☐ Approximate tree canopy coverage (acres)a: ________________________________
☐ Number of trees (greater than 4-inch diameter)b: ________________________________
☐ Identify source(s) of information used: ________________________________

Notes:
 a Tree canopy area may be estimated from current aerial photographs and/or documented field observations. Mark on composite map and provide copy of source information
 b Number of trees with diameter equal to or greater than 4 inches may be determined through existing survey or estimated based on documented field observations by a qualified individual.

8. LAND USE CONTROLS

☐ What is the project site zoning? ________________________________
☐ Describe landscaping requirements: ________________________________
☐ Describe parking requirements: ________________________________
☐ Describe any applicable comprehensive plan designation, zoning classification, and/or overlay districts that may apply to the site: ________________________________
 ☐ Does a Shoreline Master Program apply to the site? ☐ Yes ☐ No
 If yes, describe: ________________________________
 ☐ Other: ________________________________

9. ACCESS

☐ Identify/Delineate on map:
 ☐ Roads, driveways, and other points of ingress and egress within 50 feet of the project site
 ☐ Identify the street classification of the street that will provide access to the site, per the Kitsap County Road Standards: ________________________________
 ☐ Identify frontage improvement requirements: ________________________________
 ☐ Identify and Describe any other geometric design requirements that could impact the amount of impervious surface coverage on the site and the location of the access road/driveway: ________________________________

10. UTILITY AVAILABILITY AND CONFLICTS

☐ Identify/Delineate on map:
 ☐ Existing utilities and easements present on and adjacent to the project site, including utility owner. Also note any utility or easement setback requirements that affect site planning: ________________________________
 ☐ Existing utilities that may need to be moved and new utilities that may need to be extended to the site: ________________________________
EXISTING AND PROPOSED SITE LAND COVER

Fill in the table below to summarize existing and propose site land cover areas. The completed table will be used to assess the proposed plans for minimizing impervious areas, loss of vegetation, and stormwater runoff.

<table>
<thead>
<tr>
<th>Vegetated Areas</th>
<th>Existing Condition</th>
<th>Proposed Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tree canopy (acres)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tree units (#)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Landscape area (acres)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total project site vegetated area (acres)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total project site vegetated area (%)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hard Surface Areas</th>
<th>Existing Condition</th>
<th>Proposed Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hard surface (acres)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total project site impervious area (%)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Change</th>
<th>Existing Condition</th>
<th>Proposed Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increase/decrease in vegetated areas (acres)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Increase/decrease in vegetated areas (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Increase/decrease in hard surface areas (acres)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Increase/decrease in hard surface areas (%)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:

a Copy values from Part C7

POTENTIAL LID BMP

For each LID BMP being evaluated, use the infeasibility criteria in Appendix H to determine whether the LID BMP is infeasible for your project.

Document the result of that evaluation here.

<table>
<thead>
<tr>
<th>Feasibility/Infeasibility Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feasible</td>
</tr>
<tr>
<td>Post-Construction Soil Quality and Depth</td>
</tr>
<tr>
<td>Full Dispersion</td>
</tr>
<tr>
<td>Bioretention</td>
</tr>
<tr>
<td>Downspout Dispersion</td>
</tr>
<tr>
<td>Perforated Stubout Connection</td>
</tr>
<tr>
<td>Retain Existing Trees</td>
</tr>
<tr>
<td>Permeable Pavement</td>
</tr>
<tr>
<td>Sheet Flow Dispersion</td>
</tr>
<tr>
<td>Concentrated Flow Dispersion</td>
</tr>
<tr>
<td>Vegetated Roofs</td>
</tr>
<tr>
<td>Minimal Excavation Foundations</td>
</tr>
<tr>
<td>Rain Water Harvesting</td>
</tr>
<tr>
<td>New Trees</td>
</tr>
</tbody>
</table>