APPENDIX F

Hydrogeologic Report

PORT GAMBLE UPLAND LOSS

Site Risk Survey and Hydrogeologic Report – Rev. 3

DOH #2012-035

Submitted To: Sue Allison Olympia Property Group I, LLC. 19950 7th Avenue NE, Suite 200 Poulsbo, WA 98370

Submitted By: Golder Associates Inc. 18300 NE Union Hill Road, Suite 200 Redmond, WA 98052 USA

March 24, 2014

Project No. 13-00649.004

REPORT

ES-1

EXECUTIVE SUMMARY

Olympic Property Group, LLC (OPG) is planning the development of a Large On-site Sewage System (LOSS) on the Port Gamble Upland area in Northern Kitsap County. This LOSS will receive treated effluent from two distinct sources:

- The first source will be treated effluent redirected from the existing Port Gamble wastewater treatment plant, which currently discharges approximately to Hood Canal. This plant is antiquated and has at times failed to meet discharge standards. Eliminating the marine discharge may allow the state to open aquaculture resources in the area to recreational and commercial harvest, and improve water quality and habitat (e.g., eel grass beds). This work is supported by the Washington Department of Ecology to improve Puget Sound environmental health.
- The second source of treated effluent will be new commercial and residential development planned by OPG in the Limited Area of More Intense Rural Development (LAMIRD).

A Pre-Design report was submitted by Jensen Engineering (Jensen 2012) to the Washington Department of Health (DOH) on behalf of OPG. DOH approved proceeding with submission of a Hydrogeologic Report to address the fate and transport of the effluent in the drain field area (DOH 2013a; Appendix C). This report addresses sections 03200 (Site Risk Survey) and 03300 (Hydrogeological Report) of the Washington Administrative Code (WAC) 246-272B (LOSS Regulations).

Findings of the Site Risk Survey include:

- The LOSS is being designed to receive 100,000 gallons per day (gpd; 70 gallons per minute [gpm]) of commercial and residential effluent.
- Drain field design parameters (Jensen 2012):
 - Delivery of effluent is proposed through drip emitters over 500,000 square feet (ft²⁾ drain field, including developed and reserve areas, and internal areas of uneven topography.
- Wetlands are located approximately 600 feet east of the LOSS.
- Background water quality appears to have low total dissolved solids (e.g., TDS <200 milligrams per Liter [mg/L]), is of magnesium bicarbonate type, and is reducing (e.g., ammonia, iron, and manganese are present).</p>
- The unsaturated vadose zone between ground surface and the water table is approximately 100 feet thick and is comprised of fine to medium-grained sand with silt laminae increasing with depth and rare peat laminae.
- Four drinking water wells are located within a quarter mile of the LOSS.
 - No impact from operation of a LOSS is predicted to three of these wells located to the northeast and northwest of the LOSS because the water table aquifer underlying the LOSS does not extend to these areas (Port Gamble community, Waggoner and Thompson wells).
 - The Pittman Well is located approximately 600 feet west of the LOSS. It is planned that this well will also serve a second residence in the future.

A field data collection program was undertaken to characterize the hydrogeology of the site. Seven monitoring wells and four piezometers were installed. Water quality samples were collected and three transducers installed to record groundwater levels.

Findings of the Hydrogeologic Report include:

- The stratigraphy consists of (from surface to depth):
 - Discontinuous compacted sand with sparse gravel up to 14 feet thick at ground surface (~300 feet above mean sea level [ft amsl]). This compacted sand is interpreted to be sandy till, appears to have relatively low permeability (recent precipitation ponds in the bottom of pits) and is overlain by approximately 3 feet to 5 feet of a loose, permeable weathered sandy horizon.
 - Fine-grained to medium-grained sand extends from ground surface, or from under the compacted sandy till, to approximately 190 ft amsl. This sand is a fining downward sequence with increasing silt lamina at greater depth.
 - Minor peaty organic material is occasionally present in the sand profile, which may reduce predicted nitrate concentrations.
 - Massive and laminated silt greater than 30 feet thick extends below approximately 190 feet amsl.
- Groundwater conditions are:
 - The vadose zone is on the order of 100 feet thick under the LOSS footprint.
 - Horizons above silt lamina concentrations within the vadose zone are moist.
 - The water table is usually immediately above the contact between the overlying sand layer and underlying silt layer, at approximately 100 feet below ground surface under the LOSS area.
 - Groundwater flow in the water table aquifer is radially from the southeast corner of the LOSS area, flowing west, north and east.
 - The water table aquifer is interpreted to discharge where the lower contact of the sand aquifer with the underlying silt intercepts ground surface. This occurs at approximately elevation 180-200 feet amsl, and was observed in the following areas:
 - Wetland D to the east of the LOSS area, where naturally occurring disperse seeps were observed (individually less than 5 gpm).
 - Stream 3 to the northeast, where naturally occurring discharge was observed (45 gpm).
 - Possibly to the southwest where natural discharge was observed.
 - No natural discharges were observed to the north or northwest of the LOSS footprint.

DOH has indicated they will set the maximum increase of nitrate at the property boundary of 5 mg/L. Treating effluent prior to discharge to the LOSS to a total nitrogen concentration of 8 mg/L total nitrogen results in a predicted total nitrogen concentration at the property boundary of less than 5 mg/L.

Table of Contents

EXE	CUTI	VE SUMMARYES	3-1
1.0	IN	ITRODUCTION AND BACKGROUND	1
1.1	1	Previous Work	1
1.2	2	Authorization, Relationships and Limitations	2
2.0	S	ITE RISK SURVEY	3
2.′	1	Design Flow and Waste Strength	3
2.2	2	Physical Characteristics of the Primary and Reserve Drainfield Site	3
2.3	3	Sensitive or Critical Areas	4
	2.3.1	Critical Aquifer Recharge Area	4
	2.3.2	2 Sole Source Aquifer	4
	2.3.3	8 Wellhead Protection Areas	4
	2.3.4	Marine Recovery Area	5
	2.3.5	5 100-year Floodplain	6
2.4	4	Sensitive Lands or Resources within One-Half Mile of the Drainfield	6
	2.4.1	Wetlands	6
	2.4.2	2 Surface Water	6
	2.4.3	B Fish Hatcheries	6
	2.4.4	Shellfish Growing Areas	7
	2.4.5	Water Recreation Areas	7
2.5	5	Hydrogeologic Conditions	7
	2.5.1	Interpretation of Well Logs	7
	2.5.2	2 Depth to Groundwater and Flow Direction	8
	2.5.3	Vadose Zone Characteristics	8
	2.5.4	Groundwater Quality	9
	2.5.5	5 Nitrate Screening Balance	9
	2.5.6	Potential Hydraulic Continuity to Surface Water	11
3.0	H	YDROGEOLOGIC REPORT	12
3.′	1	Conceptual Model	12
3.2	2	Groundwater Quality	13
3.3	3	Monitoring Well Installation	13
3.4	1	Hydraulic Testing	14
3.5	5	Water Level Monitoring	15
4.0	С		16
5.0	R	EFERENCES	17

ii

List of Tables

- Table 1
 Port Gamble Wastewater Treatment Plant Average Monthly Flows, MGD
- Table 2Well Identification and Location Information
- Table 3Well Construction Information and Water Levels
- Table 4Groundwater Quality Data
- Table 5
 DOH Water Quality Results for Water System 00323 (Port Gamble well)
- Table 6DOH Water Quality Results for Water System 68650 (decommissioned springs)
- Table 7Hydraulic Conductivity Calculated from Grain Size Analysis
- Table 8
 Hydraulic Conductivity Calculated from Slug Tests
- Table 9
 Long-term Monitoring Pressure Transducer Inventory
- Table 10
 Depth to Water and Water Level Elevations

List of Figures

- Figure 1 Location Map and Sensitive Areas
- Figure 2 Site Map
- Figure 3 Cross-Section A-A'
- Figure 4 Cross-Section B-B'
- Figure 5 Piper Diagram
- Figure 6 Stiff Plot
- Figure 7 Water Level Plots
- Figure 8 LOSS-MW-1 Hydrograph
- Figure 9 LOSS-MW-2 Hydrograph
- Figure 10 LOSS-MW-3 Hydrograph

List of Appendices

- Appendix A As-Builts and Borehole Lithologic Logs and Well Logs
- Appendix B Test Pit Locations and Logs
- Appendix C Nitrate Screening Balance
- Appendix D Aquifer Parameters
- Appendix E Laboratory Water Quality Data

1.0 INTRODUCTION AND BACKGROUND

Olympic Property Group, LLC (OPG) is developing a Large On-site Sewage System (LOSS) to receive treated wastewater from the Port Gamble community, thereby eliminating a current wastewater discharge to the Hood Canal. Conversion of the Port Gamble marine discharge includes: 1) discharge of treated wastewater to the LOSS drain field; followed by, 2) gradual replacement of the collection system to reduce groundwater inflow.

Current average wastewater discharges from the Port Gamble community are on the order of 8,000 to 27,000 gallons per day (gpd). A peak historical flow of 81,000 gpd is attributed to groundwater inflow (Jensen 2012). Gradual replacement of the collection system will reduce groundwater inflow. The LOSS will be designed for 100,000 gpd capacity and will be permitted by the Washington Department of Health (DOH). This report provides a Site Risk Survey (SRS; pursuant to WAC 246-272B-3200) and a Hydrogeological Report (HGR; pursuant to WAC 246-272B-3300) for the proposed site, in support of fulfilling DOH permitting requirements.

1.1 Previous Work

Several studies have been completed to date in support of the LOSS permitting, including: 1) baseline site conditions; 2) geotechnical feasibility; and, 3) predesign information to identify requirements for LOSS design. These studies and some selected findings are presented below.

- Zipper Zeman Associates, Inc. (Zipper Zeman 2005) described the upland area as mantled by low-permeability till, covered by a thin veneer of fine sand and local pockets of silt, peat, and compressible soils. They also identified steep and potentially unstable slopes in the greater project area.
- Zipper Zeman (2007) describe the results from test pits across the upland area close to the planned LOSS location as encountering till, locally covered with recessional outwash. Seeps in the pits were interpreted to reflect perched groundwater conditions on top of the till.
- Terracon Consultants, Inc. (Terracon) (2012) completed test pits throughout the proposed LOSS area. The average thickness of topsoil, sand, and weathered till were reported as 0.55 feet, 1.4 feet, and 2.1 feet, respectively.
- Jensen Engineering Inc. (Jenson 2012) submitted a report in fulfillment of WAC 296-272B-03000 (Site review Predesign report). Site slope is 5 to 20% to the north and a bit to the east (some 30% slopes to be avoided). Additional test pits were completed across the drain field. Average depth to unweathered till was reported as approximately 4 feet. A predesign of the LOSS assumes no treatment beyond a septic tank, and 3 feet vertical separation between drip irrigation emitters and the water table. The drain field soils consist of Type 3 loamy sand. Preliminary design of the drain field consists of three lobes, totaling approximately 500,000 square feet (ft²) with a loading rate of 0.6 gallons per day per square foot (gpd/ft²).
- Terracon (2013) installed six groundwater monitoring wells between 4 feet and 7 feet below ground surface (bgs) to characterize winter groundwater conditions. Only one well encountered groundwater over the period of record (January 29 to April 11, 2012), in which water levels fluctuated between 2.5 to 4.2 feet bgs.

- DOH (2013a; Appendix C) provided a Site Approval letter to Jon Rose dated May 24, 2013. This letter determine that water level data, soil, and site information are consistent with the conceptual treatment design; and approves proceeding to preparation of a hydrogeological report (i.e., this report).
- DOH (2014; Appendix C) provided a hydrogeology report review letter Jon Rose dated January 28, 2014. This letter requested clarifications in the report, which are provided in this revised report, and said the maximum increase of nitrate at the property boundary will set at 5 mg/L.

1.2 Authorization, Relationships and Limitations

This work is conducted under contract with OPG signed on July 2, 2013. The work was conducted in close collaboration and coordination with the following:

- Nancy Darling, Washington DOH.
- Al Fure, Triad Associates, Inc. (Triad), prime consultant to OPG.
- David Jensen, Jensen Engineering Inc., engineering waste water drain field design.

This work was conducted according to standard professional practices usual to the time and place.

2.0 SITE RISK SURVEY

2.1 Design Flow and Waste Strength

Under current conditions, the Port Gamble community is served by a community sewer collection system that feeds a sewage treatment plant that discharges to Hood Canal. Representative average monthly flow from the Port Gamble Wastewater Treatment Plant is 13,000 gpd (Table 1). Peak flows of 81,000 gpd have occurred, and are caused by significant groundwater infiltration into the leaky sewer collection system. The existing collection system capacity is limited by infiltration of groundwater into the pipes.

Development of the proposed LOSS system would be implemented in two phases. Phase I would entail the establishment of a new treatment facility and septic tanks in the vicinity of the existing treatment facility, establishment of a new upland LOSS drain field with a dosing chamber, and abandonment of the existing outfall to Port Gamble Bay. In general, the Phase I system would use the existing collection pipe system to direct sewage to the new treatment facility. The treated effluent would then be pumped via new lines to the proposed dosing chamber and drain field.

Phase II would include the gradual replacement of the existing sewer collection pipe system with new collection pipes. The new pipes would substantially reduce the level of groundwater infiltration into the pipes compared to current conditions, thereby increasing the capacity and efficiency of the system.

The design flow rate for the LOSS is 100,000 gpd. This will accommodate baseline (8,000 to 27,000 gpd) and peak flows (81,000 gpd) from the existing Port Gamble system. As the existing collection system is upgraded and peak inflows reduced, the LOSS will be able to accommodate new flows from new planned development.

The waste strength will primarily be residential in nature. All non-residential connections will be evaluated prior to connection to the collection system, and will receive additional treatment at the source before delivery to the waste water collection system as necessary. A maximum Biological Demand (BOD) of 240 milligrams per Liter (mg/L), a maximum Total Suspended Solids of 140 mg/L, and a maximum Oils and Grease of 25 mg/L are anticipated after the primary treatment at the proposed new treatment facility (Jensen 2012).

2.2 Physical Characteristics of the Primary and Reserve Drainfield Site

This section describes physical properties of the proposed LOSS site (Figures 1 and 2). The proposed drainfield site includes a 50% reserve area and encompasses approximately 500,000 square feet (ft²). Vegetation ranges from forestland to logged meadow. In general, the site slopes downward from the

southwest to northeast between 5 and 20%, with some swale areas having slopes up to 30%. Jensen (2012) identified the topsoil as Type 3 Loamy, ranging in thickness from approximately 3 to 6 feet.

Information from 11 monitoring wells and 34 test pits installed throughout the drainfield site indicate that compact glacial till occurs on topographic highs and is underlain by a thick sequence of very fine to medium sand with interfingering silt lenses (Appendix B). Glacial tills and silt lenses create localized perching conditions that may serve as potential restrictive layers within the proposed drainfield site. The hydrogeologic setting is described further in Section 3.0.

2.3 Sensitive or Critical Areas

This section identifies the location of the proposed drain field in relation to sensitive or critical areas designated by local, state, or federal agencies.

2.3.1 Critical Aquifer Recharge Area

The Kitsap County (County) Critical Areas Ordinance identifies the proposed drainfield site as being in a Category II Critical Aquifer Recharge Area, known as an Aquifer Recharge Area of Concern (ARAC) on the basis of highly permeable surficial Ragnar/Poulsbo soils. The National Conservation Resource Service (NRCS) lists depth to groundwater as ranging from 1 to 2.5 feet in the proposed area, however, information from onsite wells indicate that actual depth to groundwater is much greater under the proposed LOSS (i.e., 75 to 120 feet bgs).

If an operation takes place within an Aquifer Recharge Area of Concern that poses a potential threat to groundwater, a hydrogeologic report is required to address potential impacts to groundwater and surface water quality (County Ordinance 18.16.615). A LOSS is considered to be a potential threat to groundwater in this area. A hydrogeologic report is presented in Section 3.

2.3.2 Sole Source Aquifer

The proposed LOSS site is located within Environmental Protection Agency (EPA) Region 10. EPA does not list any sole source aquifers in the vicinity of the proposed drainfield.

2.3.3 Wellhead Protection Areas

Spatial data for wellhead protection areas (WHPA) was obtained from DOH (Figure 2). The data identified one WHPA within the proposed site. This WHPA was assigned by DOH for a Group A Water System (ID number 68650; Source Number 01) which corresponds to a groundwater spring that was previously used by Port Gamble and has been inactive since June 18, 1991. Examination of DOH source data indicates that this source was incorrectly georeferenced in the database and is actually located approximately 2,000 feet southeast of the site.

Four drinking water wells were identified in the immediate vicinity of the LOSS:

- Port Gamble Community Well (~1,000 feet northeast of the LOSS)
- Waggoner Well (~700 feet north of the LOSS)
- Thompson Well (~1,200 feet northwest of the LOSS)
- Pittman Well (~600 feet west of the LOSS)

Logs for each of these wells are included in Appendix A, and the hydrostratigraphic setting between these wells and the LOSS site is further discussed in Section 3. The water table aquifer underlying the LOSS footprint is interpreted to not extend to the locations of the first three wells.

The Port Gamble community well is located approximately 1,000 feet northeast of the LOSS site at an elevation of approximately 180 feet above mean sea level (ft amsl). This well is completed at a depth of over 500 feet bgs, and is located on the other side of a topographic valley that intercepts groundwater discharging from the LOSS site (road seep – Figure 2). Therefore, groundwater from the water table at the LOSS location cannot migrate to the well site. Additionally, the depth of the well provides an additional measure of protection.

The Waggoner well log shows the stratigraphy at that location as consisting of low permeability clay from near ground surface (4 feet bgs) to over 200 feet depth. The stratigraphy is different from that at the LOSS local, thereby affirming the interpretation that the water table aquifer at the LOSS local does not extend to the Waggoner well local.

The wellhead of the Thompson well is approximately 200 feet lower than the LOSS site and is screened at more than 100 feet below mean sea level. The water table at the LOSS is approximately 200 feet above mean sea level. Therefore, no hydraulic connection is interpreted to exist between the LOSS site and the Thompson well.

The well located at 3435 NE Nine Boulder Drive, approximately 600 feet west of the proposed drainfield boundary, currently serves one residence and is planned to serve a second residence in the future. The groundwater elevation in this well is similar to the elevation of the water table encountered under the LOSS footprint. Closer assessment of this well is provided in Section 3.0 of this report.

2.3.4 Marine Recovery Area

The LOSS is located approximately half a mile from the shores of Hood Canal. Groundwater receiving effluent is expected to discharge where the base of the aquifer intersects ground surface at an elevation of approximately 180-200 feet above sea level. This includes discharging to the wetland complex east of the LOSS site, and other surface water drainages in which denitrification is expected to occur. Nitrate is a

parameter of concern in relation to impacts to marine waters. Consequently, no impacts to Marine Recovery Areas (MRA) are anticipated within the scope of this project.

2.3.5 100-year Floodplain

The proposed drainfield is located at an elevation approximately 300 ft amsl. In the Port Gamble Area, land surface elevations greater than 10 ft amsl are not considered to be within the 100-year floodplain.

2.4 Sensitive Lands or Resources within One-Half Mile of the Drainfield

This section identifies the sensitive lands or resources within a half mile of the perimeter of the proposed LOSS drainfield site.

2.4.1 Wetlands

Several wetlands are located near the proposed drainfield site (GeoEngineers 2013; Figure 2). The western boundaries of the wetlands are located within approximately 600 feet east of the proposed site, in a relatively flat area down-gradient of the drainfield. Triad has provided the locations of wetlands (Figure 1). These areas are not likely to be directly impacted by LOSS construction activities because the construction site is located approximately 600 feet to the west of the wetlands. Consistent with Kitsap County Code 19.200.220, buffers are delineated around wetlands to ensure that disturbance is avoided (GeoEngineers 2013).

2.4.2 Surface Water

There is a small north-flowing perennial stream 1,000 feet east of the drainfield site, approximately parallel to the change in slope (GeoEngineers 2013). The stream flows through a small (approximately 7,000 ft²) pond before draining to Puget Sound. This pond was historically a source of potable water for the community of Port Gamble. The headwaters of Stream 3 are located approximately 600 feet northeast of the LOSS. A natural base flow of 45 gallons per minute (gpm) was measured October 26, 2013 by Al Fure (Triad Associates, Inc.).

2.4.3 Fish Hatcheries

The Port Gamble S'Klallam Tribe operates the Little Boston Salmon Hatchery at the mouth of Little Boston Creek and the Port Gamble Coho Salmon Net Pens at the northern end of Port Gamble Bay. There are no other fish hatchery operations known within close vicinity of the LOSS site. It is unlikely LOSS effluent will impact fish hatchery operations because the LOSS site is greater than half a mile from these operations.

2.4.4 Shellfish Growing Areas

Shellfish growing areas are sensitive to dissolved nitrogen compounds that are present in wastewater. The current Port Gamble wastewater discharge to Hood Canal causes closures of shellfish harvest beds. The proposed redirecting of treated wastewater from its current discharge to Hood Canal, to the LOSS, will improve near shore marine water quality and habitat and potentially allow reopening of shellfish beds to harvest. The LOSS will discharge effluent to a large unsaturated zone to groundwater, which may then discharge to wetlands and surface water, which will then flow over half a mile to marine waters. This process provides numerous points that will further attenuate dissolved nitrogen compounds. Shellfish growing areas are not anticipated to be negatively affected by LOSS operation.

2.4.5 Water Recreation Areas

There are no water recreation areas within a half mile of the proposed drainfield site. Salisbury Point State Park is approximately half a mile from the LOSS site. However, as described in the description of shellfish growing areas in the preceding section, no impacts from LOSS operation on recreational waters are predicted.

2.5 Hydrogeologic Conditions

This section describes the general hydrogeologic conditions of the drainfield site. More details of the site hydrogeology are presented in Section 3.0. The data obtained from site investigations is generally consistent with published geologic maps, where the site is underlain by Quaternary glacial sediments of the Vashon Drift and advance outwash. However, whereas previous mapping shows extensive till cover (USGS 2009), till was found to be present only over portions of the LOSS site (Figures 3 and 4). All incidences of till were on topographic highs. The rest of the site is covered with sand and silt that is interpreted to be advance outwash sand that is older and underlying the till. Where present, the till is up to 10 feet thick and is overlain by a 4-foot to 5-foot veneer of weathered sandy till.

Wells installed at the LOSS revealed that the water table aquifer is a thick (approximately 40 to >100 feet thick) very fine to medium-grained sand unit that contains sparse subrounded to subangular gravels of varying lithology (i.e. quartz, granite, basalt) with thin silt laminae (approximately 0.1 to 1.0 feet thick). This water table aquifer is underlain by a massive silt to an unknown depth (>30 feet thick). The water table aquifer is interpreted to be advance glacial outwash. Specific hydrogeologic parameters are discussed in the following sections.

2.5.1 Interpretation of Well Logs

Eleven wells (including four piezometers) were installed at the LOSS from August through October 2013 as detailed in Section 3.0 (Figure 2; Appendix A). Well identification and location information is included as Table 2, and well construction information and water levels is included as Table 3.

Off-site well logs were also reviewed to assess lateral continuity. Aerial imagery shows three buildings within approximately 1,000 feet from the proposed drainfield boundary, plus the Port Gamble Community well. Tentative correlations of four of these sites with well logs were made using associated tax parcel numbers and street addresses, and are included in Appendix A. These wells include:

- Port Gamble Community Well
- Waggoner Well
- Thompson Well
- Pittman Well

The stratigraphy of the first three of these wells could not be correlated to the stratigraphy at the LOSS site. This indicates discontinuous stratigraphy and no apparent hydrogeologic correlation with the water table at the LOSS site. Water levels in these first three wells are more than 100 feet lower than the water table aquifer at the proposed LOSS site.

The Pittman well shows stratigraphy similar to that encountered under the LOSS, including a surficial till unit 26 feet thick and a depth to water of over 100 feet below ground surface. This well log is incorporated into the conceptual model of the hydrogeology of the site in Section 3.0.

Wells farther from the LOSS site indicate shallow weathered glacial till near ground surface, underlain by unweathered glacial till in some places up to 150 feet thick. Advance outwash underlies the glacial till to depths in some places exceeding 300 feet. Undifferentiated silt and sand underlie the advance outwash to an unknown depth. There is some discrepancy in the thickness of units presented when comparing onsite to offsite logs.

2.5.2 Depth to Groundwater and Flow Direction

Water level data from onsite wells is present in Table 3. Groundwater elevation contours in Figure 2 show a water level mound/divide centered on the southeast corner of the proposed LOSS footprint. Groundwater flow is radial from this mound, and likely travels in the advance outwash sand along the contact with the underlying massive silt until in intersects ground surface. Wetlands and springs are expected where the water table intersects ground surface, such as Stream 3 and wetlands D, G and H to the east and northeast of the proposed LOSS.

2.5.3 Vadose Zone Characteristics

The vadose zone has been characterized through excavation of test pits and installation of monitoring wells. Test pit logs and location information are included in Appendix B. The test pits within the drainfield were completed at depths ranging from 4 to 11 feet in what was mostly interpreted to be sandy glacial till (Appendix B; Terracon 2012). The near surface sediments were logged as silty sand to sand and had an

13-00649.004

average hydraulic conductivity of 70 feet per day (ft/d; Table 7). No evidence of perched groundwater was found during excavation, which took place in mid-July, 2012.

Terracon (2013) completed six shallow monitoring wells within the vadose zone to identify if perching conditions exist or may arise during the wet season. Completion depths ranged from 4 to 7 feet. Water was present in one well (TP-16; Appendix B), with water levels ranging from 2.5 to 4.5 feet bgs (303 to 305 ft amsl) from January to April 2013. TP-16 is located at the eastern edge of the site, in an area of glacial till. Localized till may be responsible for perching of groundwater during the rainy season in the area surrounding TP-16.

2.5.4 Groundwater Quality

Field parameters and lab water quality results from eleven new monitoring wells and the Pittman Well are presented in Table 4 and discussed in Section 3.0 below. In addition, water quality data was obtained from DOH Sentry Database for the Community of Port Gamble water system. This includes the current drinking water source that is a deep well (Table 5), and groundwater springs used prior to 1991 located south and east of the site that is assumed to be representative of shallow groundwater in the area (Table 6).

Port Gamble Bay is listed on Ecology's 303 (d) list for impaired waters. Of particular importance are exceedances of fecal coliform in 2003 which may be due in part to the wastewater outfall from the Port Gamble Community. Treated LOSS effluent will eventually discharge to Puget Sound in Port Gamble Bay after infiltrating through a thick vadose zone (e.g., 100 feet), and discharging to wetlands. Beyond the treatment provided by the proposed new treatment facility, the following attenuation processes are expected to occur:

- The thick vadose zone will result in additional nitrification.
- The fine sand of the aquifer material will provide additional attenuation of pathogens.
- Discharge to wetlands and streams will remove additional nitrogen through denitrification.

2.5.5 Nitrate Screening Balance

A nitrate screening balance was completed according to DOH guidelines for Level 1 Nitrate Balance for Large Onsite Septic Systems (DOH 2013b; Appendix C).

2.5.5.1 Background Nitrate Concentration

Baseline nitrate data was obtained from the DOH Sentry database for the Port Gamble Community water system. This database includes data from inactive groundwater springs (Table 6) with low to absent nitrate in groundwater. Because ambient geochemical conditions in the aquifer are reducing (e.g., iron, manganese and ammonia are present) a zero concentration of background nitrate is assumed.

The default value for nitrate in precipitation used 0.24 mg/L (all references to nitrate concentrations in this report are as N). The National Atmospheric Deposition Program estimates annual nitrate loading of 1 to 2 kilograms/hectare in the Kitsap Peninsula area, which equates to 0.1 to 0.2 mg/L, given the average annual precipitation of 33 inches in the Port Gamble area (Golder 2002).

2.5.5.2 Wastewater Nitrogen

Wastewater is currently treated at the Port Gamble waste water treatment plant. No measured influent nitrogen values are available. Therefore the default value of 60 mg/L recommended by DOH for the nitrate screening balance is used.

2.5.5.3 Aquifer Properties

Hydraulic conductivity (K; 7 ft/d) was averaged from seven slug tests conducted on monitoring wells (Table 8). Groundwater recharge for the Port Gamble Sub-basin is estimated to be 13.2 inches per year (Golder 2002). Saturated aquifer thickness was averaged from monitoring well logs as 11 feet. This represents a seasonal low water table, and may be higher at other times of the year (e.g., the water table may be higher by several feet, and will not substantively reduce the vertical thickness of the unsaturated zone, which is approximately 100 feet). A water level elevation change of 20 feet between the 220-foot and 200-foot elevation contours across the LOSS footprint that are separated by approximately 800 feet indicates a hydraulic gradient of approximately 0.025 (Figure 2).

2.5.5.4 Nitrogen Screening Balance Results and Discussion

DOH said they will set the maximum increase of nitrate at the property boundary at 5 mg/L (DOH 2014; Appendix C).

The nitrate screening balance spreadsheet tool provided by DOH estimates groundwater nitrate concentrations at the edge of the drain field ("point of compliance"), and at a down gradient property boundary ("alternate point of compliance"). The nitrate screening balance assumes a simple, planar groundwater flow regime with flow occurring in one direction and conversion of all nitrogen to nitrate. The distance to the property boundary is assumed to be 10 feet, representing with the setback of the LOSS from the property boundary. Treatment of wastewater to a total nitrogen concentration of 7.7 mg/L resulted in a groundwater nitrate value at the property boundary alternate point of compliance of 5 mg/L (Appendix C).

The groundwater flow pattern at the Port Gamble Upland LOSS is radial from a groundwater mound high immediately east of the LOSS footprint. Recharge from the LOSS may affect the groundwater flow pattern and shift the groundwater mound high to the west. This would result in some of the recharged effluent to flow east to where groundwater discharges at seeps to the wetlands approximately 600 feet east from the LOSS boundary. The wetlands are expected to provide additional denitrification in

groundwater that discharges to the wetlands (Wilhelm and others 1996; Lowrance and others 1995). However, denitrification in wetlands is not assumed for compliance purposes.

2.5.6 Potential Hydraulic Continuity to Surface Water

Groundwater seeps exist northeast and east of the LOSS site (Figure 2). Approximately 45 gpm was measured in the north branch of Stream 3, approximately 650 feet northeast of the LOSS site, flowing into Wetland E. A spring was also observed in Wetland D, east of the LOSS. These wetlands eventually drain to Machias Creek. The elevation of all of these seeps is approximately 185-195 feet amsl, which is coincident with the elevation of the stratigraphic contact between the advance outwash sands at the LOSS site and the underlying silt. The seepage front along the east from Stream 3 to wetlands D is approximately 2,000 feet long. Recharge from the LOSS is estimated at 70 gpm (100,000 gpd). Approximately 50% of this recharge (35 gpm) may discharge to wetlands and streams to the east of the LOSS. GeoEngineers (2014) does not anticipate negative impacts from this seepage on wetlands. No groundwater seeps were observed in a reconnaissance of topographic slopes to the north and northwest of the LOSS site.

Pathogens are expected to be present in the treated effluent that is delivered to the LOSS. Where the unsaturated zone is thick and the movement of water slow, the time taken to reach the water table is usually long enough for most pathogens to die off (Morris 2010). Most pathogens die off within 50 days of entering the ground (Morris 2010), while some may last up to 150 days (Sugden 2006). The velocity of groundwater under the proposed LOSS site is estimated to be 1 foot per day (assuming K = 7 ft/d; i = 0.025; and, porosity [n] = 0.20; v = Ki/n). Therefore, a groundwater travel time of approximately 2 years is estimated for groundwater from under the LOSS to discharge to the wetlands, which is located approximately 600 feet east of the proposed LOSS. Additional travel time will occur through the unsaturated vadose zone. There is no regulatory standard for required travel time in the subsurface, and effective attenuation of pathogens is expected to occur in the subsurface before discharging to wetlands or surface water.

3.0 HYDROGEOLOGIC REPORT

This section describes the conceptual model of the general hydrogeologic conditions at the proposed drainfield site and down-gradient areas.

3.1 Conceptual Model

Test pits and monitoring wells installed across the LOSS footprint encountered isolated patches of sandy till on topographic highs, and areas in topographic lows and slopes where till is absent. Where the till is present a 4-5 foot thick veneer of weathered sandy till covers the till. Underlying the till is a thick (approximately 100 feet), fine- to medium-grained permeable sand with silt lamina. Where the till is absent, the medium-grained sand strata underlying the till is exposed. Effluent delivered to till areas will infiltrate vertically through the weathered till to the top of the unweathered till, and then migrate laterally downslope along the top of the unweathered till to areas where the till is absent and where infiltration to greater depths will occur.

The surficial sand is relatively permeable with an average hydraulic conductivity of 6 feet per day (ft/d) calculated from grain size analyses (Table 7). Slug test values from monitoring wells completed in the lower part of the advance outwash sand averaged hydraulic conductivity of 7 ft/d (Table 8).

There is approximately 100 feet of unsaturated vadose zone. Full oxidation of nitrogen to nitrate is expected. Peat was observed in LOSS MW-3, MW-5, MW-6, and MW-7 and may result in some denitrification of nitrate. The contact between the sand and the underlying silt is at approximately 180-200 ft amsl, which is coincident with western extents of wetlands to the northeast and east of the LOSS (Figure 2). Groundwater is believed to flow along this contact to this approximate topographic line. The high water level elevation measured in LOSS-MW-5 results in a groundwater flow map that indicates radial flow from that point.

Most flow is expected to be along the top of the silt in the advance outwash sand. Minimal vertical downward flow is expected through the underlying silt due to its thickness and permeability of more than two orders of magnitude lower than that of the overlying advance outwash sand (i.e., average silt of 0.03 ft/d in MW-1 and piezometers completed in silt; Table 8).

Almost all natural recharge occurring on site is assumed to discharge to surface waters, with very minor amounts recharging to deeper portions of the aquifer system. Recharge over the area between the crest of the groundwater mound (Figure 2) and discharge points at Stream 3 and Wetlands D, G and H along the 190 feet amsl topographic contour amounts to 146 gpm. This is consistent with observed discharge of 45 gpm at Stream 3 and isolated seeps of several gallons per minute. This observation suggests that the groundwater nitrate concentrations may be lower than estimated by the nitrate screening balance as a result of dilution with natural groundwater flow.

3.2 Groundwater Quality

Field parameters (i.e. temperature, pH, alkalinity as CaCO₃, and electrical conductivity) and lab results (i.e. electrical conductivity, Ca²⁺, Cl⁻, Fe²⁺, Mg²⁺, Mn²⁺, NO₃⁻, K⁺, Na⁺, SO₄²⁻) from water quality analyses are presented in Table 4 (Appendix E). Water quality results are plotted on piper diagrams (Figure 5) and stiff plots (Figure 6) to visualize general background water quality type and characteristics. Drilling was conducted in three distinct phases: monitoring wells LOSS-MW-1 through LOSS-MW-3; monitoring wells LOSS-MW-4 through LOSS-MW-7; and piezometers LOSS-P1 through LOSS-P4. Differences in water quality between the two sets of monitoring wells may reflect the addition of water during installation of the second set of monitoring wells and influences of the bentonite seal. Resampling of the wells in the future is recommended if the data is to be used for regulatory compliance purposes.

3.3 Monitoring Well Installation

Cascade Drilling, L.P. (Cascade) was contracted to install monitoring wells. Monitoring wells were installed with a MiniSonic drill rig. The monitoring wells will also be used for long-term monitoring of groundwater elevation and water quality.

A Golder Associates Inc. (Golder) hydrogeologist was onsite August 19 through 22, 2013 to document Cascade drilling activities, log cuttings, provide input regarding three well completions, and conduct slug tests at LOSS MW-1, -2, and -3. The Golder hydrogeologist was onsite September 3 through 5, 2013 to measure water levels, install data logging pressure transducers, perform additional slug tests, and to collect field parameters and water quality samples from each well. The Golder hydrogeologist was onsite September 25, 2013 to measure water levels, download data logging pressure transducers, and to perform another slug test at MW-3. Golder personnel were also onsite October 21 through 31, 2013 to hand auger, log cuttings, install four shallow piezometers, perform slug tests, and to collect field parameters and water quality samples at LOSS P-1, -2, -3, and -4. During this period, Golder personnel also documented Cascade drilling activities, logged cuttings, provided input regarding four well completions, measured water levels, conducted slug tests, and collected field parameters and water quelity samples at LOSS P-1, -2, -3, and collected field parameters and water quelity samples at LOSS MW-4, -5, -6, and -7.

A survey of LOSS MW-1, -2, and -3 was completed on Friday, September 13, 2013 by Triad. Another survey of LOSS MW-4, -5, -6, -7 and P-1, -2, -3, and -4 was completed on Thursday, October 31, 2013 by Triad. Monitoring well identification and location information is included in Table 2 and shown in Figure 1.

Monitoring wells (2-inch, PVC), were installed in 6-inch boreholes. Formation samples were collected at 5-foot intervals and logged by the onsite hydrogeologist. Monitoring well borehole geologic logs and well completion diagrams are provided in Appendix A. Based on borehole geologic logs, site lithology consists predominantly of very fine to medium sands interfingered with thin silt lenses. Compact glacial tills were

13-00649.004

observed overlying the sands at MW-2, -3, -4. Massive silt layers of silt were observed underlying the sands in LOSS MW-1, -2, -5, and -6. Bedrock was not encountered in the boreholes.

Monitoring well construction information is summarized in Table 3. Monitoring wells were constructed with 15 to 25-foot segments of 10-slot PVC screen (0.010 inch openings). Threaded 2-inch diameter PVC pipe extends from the top of the well screen to approximately 2 to 3 feet above ground surface at each well. An engineered filter pack consisting of 10-20 mesh Colorado silica sand was placed around the well screen to a level of approximately 2 to 4 feet above and below the screen extents, with exceptions noted below. Filter pack was placed concurrent with the removal (pull-back) of the temporary drill casing and measured with a sounding tape to ensure placement around the screen without bridging. A surface seal consisting of hydrated 3/8-inch bentonite chips was emplaced from the top of the filter pack to 3 feet bgs as the temporary drill casing was removed from the borehole and then filled with concrete to ground surface. At the surface the PVC stick-up is contained within a yellow painted steel casing set in 2 by 2-foot concrete pads that are surrounded by three 3-foot yellow-painted steel bollards.

In some instances, Cascade pulled the PVC casing above the intended set depth due to over-packing the drill casing with filter pack material (i.e., MW-1, -2, -3, and -5) during drill casing removal. In other instances, the PVC casing settled below the intended depth due to liquefaction created by sonic vibrations during drill casing removal (i.e., MW-4 and -7). At MW-7, 50 feet of 6-inch casing was temporarily lost in the borehole due to joint break during casing removal, and so the borehole was overdrilled with an 8-inch casing to retrieve the lost casing and to reset the well. It is likely that the well screen may have been compromised by bentonite due to inadequate refuse removal following the first unsuccessful attempt to set the well in the 6-inch borehole.

3.4 Hydraulic Testing

The wells contained water following installation, and so the onsite hydrogeologist conducted slug tests to estimate the hydraulic properties of the unconsolidated material adjacent to the screened intervals. Water levels in the wells were monitored in 30-second intervals for 20-minutes following removal of 63 cubic inches (in³) of water via a disposable bailer. Following the slug tests, the wells were hand-developed with the bailer by purging approximately 6 gallons (3 well volumes) from each well. MW-1 was bailed dry during this period. Turbidity was not reduced.

Slug testing data were analyzed using the Hvorslev method (Hvorslev 1951) to estimate hydraulic conductivity (K) of the aquifer. Hydraulic conductivity estimates fall within the range of published hydraulic conductivity values for unconsolidated silty to silty sand aquifers (Freeze and Cherry 1979). Curve matching plots for both analysis methods are presented in Appendix D and analysis results are summarized in Table 8.

3.5 Water Level Monitoring

Data logging pressure transducers (15-minute interval) were installed September 10, 2013 per Table 9 to document long-term trends in groundwater level fluctuations. Because MW-1 is in a confined aquifer, it was relocated to MW-5 on November 26, 2013, and the time of all transducers was reset for Pacific Standard Time. The barometric monitor was placed inside the monument of MW-1 and remains there at this time. Depth to groundwater and groundwater elevations are listed in Table 10.

A plot of long-term water level trends at MW-1, -2, and -3 is provided as Figure 7, which shows a slight decrease in water level over the period of record despite precipitation during this period. Precipitation records are from Bremerton airport (up to October 31, 2013) and the Bremerton fire station (from November 1, 2013).

The lack of response of groundwater levels to precipitation suggests there is a lag time for precipitation to recharge the water table aquifer. Figures 8 through 10 show plots of barometric pressure plotted against long-term water level elevation that is corrected for barometric pressure. Monitoring well MW-1 shows strong correlation with barometric response. This information coupled with borehole lithology suggests that the massive silt logged at the bottom of MW-1 is a significant confining layer and a barrier (aquitard) to vertical flow.

4.0 CLOSING

Thank you for this opportunity to be of service.

GOLDER ASSOCIATES INC.

ames & Johns

James G. Johnson, LEG Principal Engineering Geologist

Jonathan Gerst Staff Hydrogeologist

JGJ/CVP/JG

Chris Pitre, LHg Associate Hydrogeologist

5.0 **REFERENCES**

- Department of Health (DOH). 2013a. Site Approval letter to Jon Rose dated May 24, 2013 (Project Number 2012-035).
- DOH. 2013b. Publication #337-069 (Revised October 2013) Level 1 Nitrate Balance Instructions for Large On-site Sewage Systems.
- DOH. 2014. Port Gamble Hydrogeology Report. Letter from Nancy Darling to Jon Rose of Olympic Property Group January 28, 2014.
- Department of Natural Resources (DNR). 2007. Washington DNR Hydrography (HYDRO) for Kitsap County.
- Freeze, R.A. and J.A. Cherry. 1979. Groundwater. Prentice-Hall, Inc. Englewood Cliffs, New Jersey.
- GeoEngineers. 2013. Technical Discipline Report: Plants, Animal and Wetlands. Prepared for Pope Resources.
- GeoEngineers. 2014. Revised Evaluation of Impacts to Water Quantity on Wetlands; Port Gamble Large On-site Sewage System Memorandum. Prepared for Olympic Property Group I, LLC. February 28, 2014.
- Golder Associates Inc. (Golder). 2002. Kitsap Basin (WRIA 15) Watershed Planning Level 1 Assessment. Prepared for Kitsap County.
- Hvorslev, M.J. 1951. Time Lag and Soil Permeability in Ground-Water Observations, Bull. No. 36, Waterways Exper. Sta. Corps of Engineers, U.S. Army, Vicksburg, Mississippi, pp. 1-50.
- Jensen Engineering Inc. (Jenson). 2012. Port Gamble Large On-Site Sewage Disposal System Predesign Report. September 2012.
- Kasenow, M. 2002. Determination of Hydraulic Conductivity from Grain Size Analysis. Water Resources Publications, pp. 53-70.
- Lowrance, R., G. Vellidis and R.K. Hubbard. 1995. Denitrification in a Restored Riparian Forest Wetland. Journal of Environmental Quality 24(5): 808-815.
- Morris, B. 2010. Pathogens and Groundwater. Review for the United Kingdom Groundwater Forum.
- Natural Resources Conservation Service (NRCS) Soil Classification System (SCS). 2012. Custom Soil Resource Report for Kitsap County Area, Washington, Port Gamble.
- Sugden, S. 2006. The Microbiological Contamination of Water Supplies. Well Fact Sheet. Downloaded 7/1/2013 from http://www.lboro.ac.uk/well/resources/fact-sheets/fact-sheets-htm/Contamination.htm
- Terracon Consultants, Inc. (Terracon). 2012. Geotechnical Feasibility Evaluation: Port Gamble Upland LOSS. September.
- Terracon. 2013. Groundwater Monitoring Summary: Port Gamble Upland LOSS.
- Tchobanoglous, G., F.L. Burton and Metcalf and Eddy, Inc. 1991. Wastewater Engineering: Treatment Disposal and Reuse. McGraw-Hill Book Co., Inc. New York, New York. pp. 1334.
- United States Geologic Survey (USGS). 2009. Surficial Geology of the Kitsap Peninsula. Open-File Report 2009-1033 Version 1.0, Sheets 1 and 2.
- Wilhelm, S.R., S.L. Schiff and W., D. Robertson. 1996. Biogeochemical Evolution of Domestic Waste Water in Septic Systems: 2 Application of Conceptual Model in Sandy Aquifers. Groundwater, Vol. 34, No.5.
- Zipper Zeman Associates, Inc. (Zipper Zeman). 2005. Geotechnical Feasibility Report: Baseline Site Conditions Study.

Zipper Zeman. 2007. Geotechnical Pre-Design Report: Forested Upland Study.

TABLES

Month	2001	2002	2003	2004 †	2005	2006	2007	2008	2009	2010
January	0.008	0.018	0.031	0.029	0.011	0.03	0.02	0.019	0.013	0.027
February	0.007	0.02	0.021	0.027	0.016	0.015	0.013	0.012	0.012	0.021
March †	0.008	0.018	0.033	0.013	0.011	0.017	0.018	0.01	0.015	0.017
April	0.013	0.011	0.022	0.008	0.017	0.013	0.013	0.012	0.015	
Мау	0.013	0.01	0.018	0.007	0.012	0.01	0.01	0.009	0.01	0.016
June	0.014	0.012	0.013	0.011	0.013	0.011	0.008	0.01	0.008	0.015
July	0.013	0.013	0.013	0.009	0.013	0.01	0.009	0.011	0.006	0.009
August	0.014	0.011	0.013	0.007	0.012	0.01	0.008	0.009	0.006	0.012
September	0.011	0.01	0.013	0.009	0.013	0.009	0.008	0.008	0.008	0.01
October	0.01	0.006	0.018	0.009	0.008	0.008	0.009	0.008	0.007	0.012
November	0.023	0.007	0.024	0.008	0.011	0.024	0.011	0.011	0.027	0.017
December	0.022	0.016	0.029	0.014	0.022	0.026	0.027	0.012	0.018	
Annual Average	0.013	0.013	0.021	0.013	0.013	0.015	0.013	0.011	0.012	
Total annual water use (gallons)	4,381,209	4,036,624	3,621,564	4,121,269	5,053,322	5,076,457	4,627,124			
Total annual rainfall (inches)	39.6	29.2	39.2	36.0	35.0	42.4	34.3			

 Table 1: Port Gamble Wastewater Treatment Plant Average Monthly Flows, MGD

Notes:

-- Data not available

† Manholes repaired March 2004

Pre-repair flows

Table 2: Well Identification and Location Information

OPG Well ID	Date Installed	Ecology Well ID	JY Northing Easti		Top of PVC casing elevation (ft amsl)	PVC casing stick-up (ft ags)
LOSS MW-1	8/20/2013	BHN-761	314467.56	1206721.69	289.03	2.25
LOSS MW-2	OSS MW-2 8/21/2013		314306.42	1206908.99	315.26	2.39
LOSS MW-3	8/22/2013	BHN-763	314218.83	1206696.26	296.87	2.38
LOSS MW-4	10/28/2013	BHN-786	313806.86	1206562.49	341.7	2.64
LOSS MW-5	10/29/2013	BHN-785	314053.73	1207410.78	246.83	2.54
LOSS MW-6	5 10/30/2013 BHN-783		314901.64	1207277.75	238.48	2.93
LOSS MW-7	10/24/2013	BHN-784	314886.51 1206539.87		292.44	2.96
LOSS P-1	10/25/2013		314452.26	1207673.98	185.21	2.16
LOSS P-2	10/24/2013	20	314328.77	1207544.28	216.28	2.42
LOSS P-3	10/24/2013	па	314226.71	1207567.37	216.3	2.18
LOSS P-4	10/25/2013		314137.56	1207564.74	215.69	1.96
Pittman	10/31/2002	AES 249	314418.971	1205900.7	330.62	~1

Notes:

Coordinates are in Washington State Plane NAD83 (Horizontal) and NAVDAT88 (Vertical)

n/a = Not analyzed

ft amsl = feet above mean sea level

ft ags = feet above ground surface

OPG Well ID	Borehole Depth (ft bgs)	Screen (ft bgs)	Filter Pack (ft bgs)	Water Level (ft btoc)	Water Level (ft amsl)
LOSS MW-1	90	52.5 - 77.5	52.2 - 82.7	77.41 ¹	211.62 ¹
LOSS MW-2	120	80.2 - 100.2	82.7 – 110.0	95.39 ¹	219.87 ¹
LOSS MW-3	90	68.4 - 83.4	67.2 – 90.0	77.72 ¹	219.15 ¹
LOSS MW-4	130	112.0 – 132.0	108.0 – 128.0	122.80 ²	218.90 ²
LOSS MW-5	60	18.0 – 38.0	16.0 – 42.0	26.66 ²	220.17 ²
LOSS MW-6	55	34.0 - 44.0	31.0 – 46.0	43.83 ²	194.65 ²
LOSS MW-7	110	87.5 – 102.5	82.0 – 101.0	94.13 ²	198.31 ²
LOSS P-1	9	2.8 – 7.8	2.0 - 9.0	5.01 ³	180.20 ³
LOSS P-2	9	2.6 – 7.6	2.0 - 9.0	6.22 ³	210.06 ³
LOSS P-3	9	2.8 – 7.8	2.0 - 9.0	7.60 ³	208.70 ³
LOSS P-4	9	3.0 - 8.0	2.0 - 9.0	4.61 ³	211.08 ³
Pittman ⁴	175	170-175	None (0.004- inch screen)	132.9 ⁴	197.72 ⁴

Table 3: Well Construction Information and Water Levels

Notes:

¹ October 21, 2013

² October 31, 2013

³ October 30, 2013

⁴ November 26, 2013

ft bgs = feet below ground surface

ft btoc = feet below top of casing

ft amsl = feet above mean sea level

Table 4: Groundwater Quality Data

	Site	Units	MW-1	MW-2	MW-3	MW-4 ³	MW-5 ³	MW-6	MW-7 ³	P-1	P-2 ³	P-3 ³	P-4 ³	Pittman
	Date (2013)	MM/DD		9/10		10/31	10/30		10/31			10/30		11/26
	Time	hh:mm	16:46	16:20	15:45	14:55	18:10	10:34	13:40	9:10	14:00	15:00	16:30	13:10
Data	Temperature	°C	14.8	13.5	14	11.56	10.26	11.54	10.55	12.46	13.28	13.27	11.46	10.9
	рН	SU	7.49	7.52	7.87	8.07	6.89	7.32	8.06	6.88	6.51	6.75	6.22	7.61
ield	Alkalinity (as CaCO3) ¹	mg/L	112	132	104	92	119	138	189	78	52	48	48	61
	Electrical Conductivity	uS/om	254.8	234	168	213	263	311	348	171	80	131	104	91.6
	Electrical Conductivity at 25°C	µ3/cm	238	223	136	222	297	331	360	156	70.7	129	99.7	200
	Sodium		7.27	10.2	6.94	24	45.6	59.7	85.8	8.79	4.61	6.1	7.65	5.2
	Potassium		1.74	2.46	1.45	1.9	2.02	2.31	4.15	2.77	0.657	0.831	1.17	1.7
	Calcium		17.3	14.7	8.74	12.8	11	11.4	12.8	15.7	5.19	7.51	5.88	25.9
ita	Magnesium		15.2	12.5	6.32	5.59	3.74	3.18	12.3	5.62	3.26	6.03	3.45	12
b Da	Iron	ma/l	0.38	0.077	0.193	0.299	0.396	0.139	31.9	0.0373	0.106	0.155	0.519	<0.06
La	Manganese	mg/∟	0.247	0.383	0.265	0.726	0.871	0.0586	0.601	0.0398	0.0105	0.0032	0.0084	0.011
	Chloride		5.85	4.48	1.28	3.21	7.26	9.66	9.95	1.12	1.12	2.25	1.8	5.4
	Ammonia (as N)			n/a		0.105	0.196	0.181	0.085	0.143	0.086	0.076	0.069	<0.05
	Nitrate (as N)			<0.01		0.03	0.04	0.04	<0.01	0.13	0.07	2.88	0.97	0.13
	Sulfate		20.9	15.5	10.3	17.7	5.43	4.6	5.34	1.31	2.27	4.79	6.23	19
ulated	Charge Balance Error (CBE) ⁴	%	1%	-7%	-20%	6%	12%	14%	31%	11%	-11%	0%	-4%	24%
Calcı	TDS	mg/L	128.20	128.16	90.54	96.58	101.52	113.44	188.27	71.68	43.83	52.97	48.21	99.65

Notes:

¹ Determined using Hach Alkinity kit. Method: add Phenolpthalein and Bromcresol powder to 100 mL sample and titrate with 1.6N H2SO4 until color change from green to pink.

 2 Field alkalinity adjusted to achieve CBE <5%.

³ Alkalinity sample field filtered with 0.45 micron filter to improve visual determination of color change.

SU = standard unit

⁴ CBE calculated with field alkalinity (CBE = ((Total Cation meq/L - Total Anion meq/L) / (Total Cation meq/L + Total Anion meq/L))*100%).

°C = degrees Celsius

mg/L = milligrams per liter μ S/cm = microsiemens per centimeter

Analyte	3/1/1995	9/9/1996	8/4/1998	6/20/2000	8/1/2001	12/27/2002 to 10/11/2011	
ARSENIC	<0.01		<0.005		<0.005		
BARIUM	<0.1		<0.01		<0.1		
CADMIUM	<0.002		<0.0005		<0.001		
CHROMIUM	<0.01		<0.005		<0.01		
IRON	<0.1		<0.05		<0.1		
LEAD	<0.002		<0.001		<0.002		
MANGANESE	<0.01		0.03		0.01		
MERCURY	<0.0005		<0.0002		0.0008	ΝΟ ΠΑΤΑ	
SELENIUM	<0.005	NO DATA	<0.005	NO DATA	<0.005	NO DATA	
SILVER	<0.01		<0.0005		<0.01		
SODIUM	40		41.4		39.1		
HARDNESS	61		57.7		60		
Conductivity (Umhos/cm)	276		281		275		
TURBIDITY (NTU)	0.3		0.24		0.13		
COLOR (CU)	<5		15		<5		
FLUORIDE	<0.2		0.2		<0.2		
NITRATE	<0.5	0.1	<0.1	0.6	<0.1	<0.5	
CHLORIDE	5		3.92		<5		
COPPER	<0.2		<0.005		<0.2		
ZINC	<0.2		<0.005		<0.2		
BERYLLIUM	<0.003		<0.0005		<0.003		
NICKEL	<0.04		<0.04		<0.04		
ANTIMONY	<0.005	NO DATA	<0.005	NODATA	<0.005	NODATA	
THALLIUM	<0.002		<0.002		<0.002		
NITRITE-N	<0.5		<0.01		<0.01		
CYANIDE	<0.05				<0.05		
Total Nitrate + Nitrite					<0.5		

Table 5: DOH Water Quality Results for Water System 00323 (Port Gamble well)

Analyte	10/13/1987	8/16/1984	6/13/1983	11/14/1981
ARSENIC	<0.01	<0.01		<0.01
BARIUM	<0.25	<0.25		<0.25
CADMIUM	<0.002	<0.002	NO DATA	<0.002
CHROMIUM	<0.01	<0.01		<0.01
IRON	<0.1	0.06	0.69	0.06
LEAD	<0.01	<0.01	NO DATA	<0.01
MANGANESE	<0.01	0.022	0.205	<0.01
MERCURY	<0.0005	0.0005		0.0005
SELENIUM	<0.005	<0.003	1	<0.005
SILVER	<0.01	<0.01		<0.01
SODIUM	5	5		5
HARDNESS	50	55		NO DATA
CONDUCTIVITY	160	150	NO DATA	140
TURBIDITY	0.3	0.3		0.2
COLOR	<5	<5		25
FLUORIDE	<0.2	<0.2		<0.2
NITRATE-N	<0.2	0.2	1	0.4
CHLORIDE	<5	5		<5

Table 6: DOH Water Quality Results for Water System 68650 (decommissioned springs)

Table 7: Hydraulic Conductivity Calculated from Grain Size Analysis

Site	USCS Classification	Lithology ¹	Hydraulic Conductivity Range	Hydraulic Conductivity			
			(cm/sec) ²	(cm/sec)	(ft/day)		
TP-1	Silty Sand (SM)	Weathered Till	2.5E-4 to 2.5E-3	1.7E-03	4.8		
TP-5	Silty Sand (SM)		1.4E-4 to 4E-3 ⁴	7.5E-4 ⁴	2.1		
TP-20	Sand (SM)	Sandy Till	5.4E-4 to 1E-3	1.4E-03	4.0		
TP-31	Silty Sand (SM)		6.9E-4 to 6.5E-2	5.2E-03	14.7		
TP-4*	Silty Sand (SM)		1.6E-3 to 3.0E-3 ⁴	2.2E-3 ⁴	6.2		
TP-4*	Sand (SP)	Recessional Outwash	4.0E-4 to 3.2E-3	1.1E-3	3.1		
TP-9*	Sand (SP)		3.7E-4 to 3.0E-3	1.1E-3	3.1		
TP-24*	Silty Sand (SM)	Weathered Till	6.3E-4 to 1.2E-3 ⁴	8.6E-4 ⁴	2.4		
TP-28*	Sand (SP)	Advance Outwash	1.8E-3 to 1.5 E-2	4.3E-3	12.2		
Average				2E-03	5.9		

Notes:

* Grain size analysis performed by Zipper Zeman Associates, 2006. All other analysis by Terracon, 2012.

¹ Lithologic interpretations from Terracon, 2012.

² Range in conductivity of applicable equations for hydraulic conductivity (e.g., Barr, Kozeny-Carmen, Pavchich, and Sauerbrei).

³ Geometric mean conductivity from applicable equations.

⁴ Applicable equations limited to Barr and Kozeny-Carmen due to increased percentage of fines.

ft/day = feet per day

cm/sec = centimeters per second

Table 8:	Hvdraulic	Conductivity	Calculated	from Slug Tests	
	nyaraano	eenaaeenny	• ale alate a	nom onag rooto	

		Lithology	Hydraulic Conductivity			
OPG Well ID	Date of Slug Test	Tested	(ft/day)	(cm/sec)		
LOSS MW-1	9/10/2013	SILT	0.044	1.60E-05		
LOSS MW-2	9/10/2013		20	6.90E-03		
LOSS MW-3	9/25/2013		3.6	1.30E-03		
LOSS MW-4	10/31/2013		20	7.00E-03		
LOSS MW-5	10/31/2013	Silly SAND	0.42	1.50E-04		
LOSS MW-6	10/31/2013		3.1	1.10E-03		
LOSS MW-7	10/31/2013		1.6	5.80E-04		
LOSS P-1	10/31/2013	SILT	0.027	9.50E-06		
LOSS P-2	10/30/2013	Silty SAND	0.32	1.10E-04		
LOSS P-3	10/30/2013	SILT	0.018	6.20E-06		
LOSS P-4	10/30/2013	Sandy SILT	0.022	7.80E-06		
Average		SAND	7	2.45E-03		
Average		SILT	0.03	9.88E-06		

Notes:

ft/day = feet per day

cm/sec = centimeters per second

	Denne	Cable	Cable			
Serial Number	(psi)	Length (feet)	Length 9/10/2013 to 11/26/201 (feet) 11/26/2013 preser			
21330007	15 (barometric monitor)	n/a	LOSS-MW-1			
21327069		95	LOSS-MW-1	LOSS-MW-5		
21335021	30	125	LOSS-MW-2			
21335020		95	LOSS	-MW-3		

Table 9: Long-term Monitoring Pressure Transducer Inventory

Notes:

All sensors are model INW PT2X

psi = pounds per square inch

Table 10: Depth to Water and Water Level Elevations

OPG Well ID		10/31/2002	22-Aug-13	9-Sep-13	10-Sep-13	25-Sep-13	21-Oct-13	30-Oct-13	31-Oct-13	26-Nov-13
	Date Installed				I (feet	Depth to Wate below top of ca	r Ising)			
LOSS MW-1	8/20/2013		76.76	76.95	76.80	77.07	77.41			77.84
LOSS MW-2	8/21/2013		94.94	95.16	95.14	95.24	95.39			
LOSS MW-3	8/22/2013		77.10	77.49	77.49	77.59	77.72			77.85
LOSS MW-4	10/28/2013								122.80	122.82
LOSS MW-5	10/29/2013								26.66	26.72
LOSS MW-6	10/30/2013								43.83	43.91
LOSS MW-7	10/24/2013								94.13	95.74
LOSS P-1	10/25/2013							5.01		
LOSS P-2	10/24/2012							6.22		
LOSS P-3	10/24/2013							7.60		
LOSS P-4	10/25/2013							4.61		
Pittman	10/31/2002	136								132.90
	Top of Casing Elevation		Water Elevation							
					(ft amsl; NAV	DAT88)				
LOSS MW-1	289.03		212.27	212.08	212.23	211.96	211.62			211.19
LOSS MW-2	315.26		220.32	220.10	220.12	220.02	219.87			
LOSS MW-3	296.87		219.77	219.38	219.38	219.28	219.15			219.02
LOSS MW-4	341.70								218.90	218.88
LOSS MW-5	246.83								220.17	220.11
LOSS MW-6	238.48								194.65	194.57
LOSS MW-7	292.44								198.31	196.70
LOSS P-1	185.21							180.20		
LOSS P-2	216.28							210.06		
LOSS P-3	216.30							208.70		
LOSS P-4	215.69							211.08		
Pittman	330.62	194.62								197.72

Note: ft amsl = feet above mean sea level

FIGURES

1/7/2014 3:10:13 PM by BVang-Johnson Exported 1/7/2014 2:57:07 PM by BVang-Johnson / Modified Critical Port Gamble/MXD/R03/1300649F013R03 Document: M:\Projects\2013\1300649 OPG Vlap

LEGEND

MW-1

 Monitoring Well and Groundwater Elevation ft amsl
 P-1 180.2

Piezometer and Groundwater Elevation ft ams

Domestic Well (surveyed)

Domestic Well
 (not surveyed lo

- (not surveyed, location approximate)
- 🕈 Test Pit
- Spring
- ---- Road Seep
- --- Groundwater Elevation Contour
- ----- Cross Section Location
- Wetland
- Stream
- Proposed Drainfield Area
- ---- Property Boundary
- Contour (10 ft)

REFERENCES

TITLE

 PUGET SOUND LIDAR CONSORTIUM (TOPOGRAPHY)
 TRIAD ASSOCIATES (PITS, WETLANDS, LOSS LAYOUT, PROPERTY BOUNDARY, STREAMS, WELLS, PIEZOMETERS)
 COORDINATE SYSTEM: NAD 1983 StatePlane Washington North FIPS 4601 Feet

OLYMPIC PROPERTY GROUP PORT GAMBLE LOSS (1300649) KITSAP COUNTY, WASHINGTON

SITE MAP

~ 1							
1		PROJECT NO	. 1300649	-	1300649	F 11R05_Topograp	hy_New_MWs.mxd
\langle		DESIGN	-	-	SCALE:	AS SHOWN	REV. 5
	Golder	GIS	TH	7 Jan. 2014			
50	Associates	CHECK	TH	28 Feb. 2014	l F	FIGUR	E: 2
	Associates	REVIEW	CP	28 Feb. 2014			

	EXPLANATION
	LOSS MW-3
	MONITORING WELL AND DESIGNATION
)	SILI GROUNDWATER ELEVATION SAND SCREENED INTERVAL
	GEOLOGIC CONTACT
	SPRING/SEEP
)	
1	
)	
Ĺ	
	SCALE FEET
	COMPILATION AND REVIEW OF DATA PORT GAMBLE, WA.
	PROJECT No. 1300649.004 FILE No. 13006-49-004-001 DESIGN CM 2013-11-18 SCALE AS SHOWN CADD ACF 2013-11-18 FIGURE
	CHECK MK 2013-11-18 REVIEW CP 2013-11-18

(PROJECT N	lo.	1300649.004	FILE No.	13006-49-004-001
	DESIGN	CM	2013-11-18	SCALE	AS SHOWN
Golder	CADD	ACF	2013-11-18	FIGURE	
Associates	CHECK	MK	2013-11-18		Λ
113000010000	REVIEW	CP	2013-11-18		-

TITLE

OLYMPIC PROPERTY GROUP COMPILATION AND REVIEW OF DATA PORT GAMBLE, WA.

CROSS SECTION B-B'

P:\PROJECTS\2013\13-00649 OPG Port Gamble\Task 4- Reporting\Rev 1\Figs and Tabs\121613jg1_Draft WQ Data_Figures 5 and 6_jdg.xlsx

Fig 7-8-9-10 Hydro Data_Analysis Appendix D_2.xlsx

APPENDIX A WELL LOGS

Pittman Well

Waggoner Well

Port Gamble Community Well

Thompson Well

LOSS Monitoring Wells 1 thru 7

	2333	Dittm			27-2E	7F	•
1.	1)5	Fiund					
ile Orig	g & First Copy - Dept of Ecology ond Copy - Owner, Third Copy - Driller	WATER WELL State of Wa	i REPORT ashington		Start Card No Unique Well ID	W153760 AES249	
				Water I	Right Permit No		
1) OWNED	R Name KURT WAGGONER	Address P O	BOX 118 KINGSTON W	A 98346	· · · · · · · · ·	Page 1	l of
2) LOCA	TION OF WELL County KITSAP			SE 1/	/4 NW 1/4 Sec 7	T 27 N H	r 25
2a) STRE	ET ADDRESS OF WELL (or nearest address) BAB	COCK ST OFF	1WY 3 TAX# 072702-2-	WA			
3) PROPO	OSED USE DOMESTIC Owner Well	ID	(10) WELL LOG or D	ECOMMISSIONING	PROCEDURE DESCR	IPTION	
4) Type Meth	of work NEW WELL od Cable			Material		From	Te
						┤ ────┤	
5) DIME	NSIONS Diameter of well 6		HARDDAN BOCKY	MTID	BROWN	1 2 1	1 26
Drii.	Ted 1/5 feet Depth of completed well	1/5 10	CAND BOIND W/	BUCKE	BROWN	1 26	1 79
				ROCKD	BROWN	178	/0 01
() CONS	TROCTION DETAILS		SAMD W/ RUCKS		BROWN	1 /0	1 12
Casi	ng instit 6 " Diam from 0 ft		SILI SANDI		DROWN	1 1 2 0	1 16
Weld	ed X "Diam from ft		SAND W/ ROCKS		BROWN	1 120	1 15
Line	r _ "Diam from ft	to It	SAND BOUND SIL	TY FINE	BROWN	1 15/	1 100
Threa	aded _		SAND FINE		BROWN	166	17:
- <u></u>			SAND FINE		GRAY	173	17
Perf	orations Yes No X		SILT COMPACT		GRAY	175	
Туре	of perforator used		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		'	۱
Sıze	of perforations in by	1 n				I	
	perforations from ft to	ın				l!	I
	perforations from ft to	111					I
	perforations from ft to	1n	l			I	I
Fa						1	i —
Scre	ens Yes X No					1	i —
Mamu	facturer's Name JOHNSON		·			ii	i —
Tune	STAINLESS Model No.	SUPER	, <u> </u>	<u></u> .		;	1
-1F4	6 Slot size 4 from 170 from 170	0 175 ft	·		<u> </u>	1	¦
Da	Clot and a from the		t				¦
Diam			!	RECEI	VED-	1	¦
Grov	al packed Yes No Y Site of group		· <u> </u>			1	!
Grav	el placed from ft to	f+	I	NOV 1 3	<u>, 2002 — </u>	· · · · · · · · · · · · · · · · · · ·	
JIU			I <u></u>				¦—
Gumf	and soll you you may hat death? 22		!	DEDT OF F	COLOGY	¦	!
Suri	are seat tes V NO TO AUST Gebtu, 53	IC	ا ــــــــــــــــــــــــــــــــــــ			!	¦ —
mate	are about in sear DENIGNIE	1a ¥			<u> </u>	ا مــــــــــــــــــــــــــــــــــــ	!
D10	any sectors contain unusable water' ies _ N	A	1			¦!	!
туре	or water? Depth of strata	L	l <u></u>	· · · · · · · · · · · · · · · · · · ·		!	! —
Meth	od or sealing strata off				<u></u>	!	! —
			!			!!	!
) PUMP	Manufacturer's Name STA RITE		!			!!	_
Туре	SUBMERSIBLE H P	2				I!	ــ ا
				· · · · · · · · · · · · · · · · · · ·		I!	I
) WATE	R LEVELS Surface elev above mean sea level	300 ft	l	<u> </u>		1	1_
Stat	ic level 136 ft below top of well Da	te 10/31/02	l			1	1
	_	- -	J				;
Arte	sian pressure lbs per sq in Da	LCO				1 1	
Arte: Arte:	sian pressure lbs per sq in Da sian pressure is controlled by	ice				//	1 —
Arte: Arte:	sian pressure lbs per sq in Da sian pressure is controlled by			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		, 	
Arte Arte	sian pressure lbs per sq in Da sian pressure is controlled by 		Work Started	. 10/25/02	Completed 10/31/	 02	i
Arte Arte) WELL Yiel	sian pressure lbs per sq in Da sian pressure is controlled by TESTS Pump test made? YES By whom? DRILL d 15 gal /min with 16 ft drawdown a	ER fter 3 hrs	Work Started	10/25/02	Completed 10/31/	02	
Arte Arte) WELL Yiel Yiel	sian pressure lbs per sq in Da sian pressure is controlled by TESTS Pump test made? YES By whom? DRILL d 15 gal/min with 16 ft drawdown a d 0 gal/min with ft drawdown a	ER fter 3 hrs fter hrs	Work Started	. 10/25/02 (ERTIFICATION	Completed 10/31/	02	
Arte Arte) WELL Yiel Yiel	sian pressure lbs per sq in Da sian pressure is controlled by TESTS Pump test made? YES By whom? DRILL d 15 gal /min with 16 ft drawdown a d 0 gal /min with ft drawdown a d 0 gal /min with ft drawdown a	ER fter 3 hrs fter hrs fter hrs	Work Started WELL CONSTRUCTOR C I constructed an	. 10/25/02 (ERTIFICATION d/or accept res	Completed 10/31/	02 construc	1 1
Arte Arte) WELL Yiel Yiel Xiel	sian pressure lbs per sq in Da sian pressure is controlled by TESTS Pump test made? YES By whom? DRILL d 15 gal /min with 16 ft drawdown a d 0 gal /min with ft drawdown a d 0 gal /min with ft drawdown a very data	ER fter 3 hrs fter hrs fter hrs	Work Started WELL CONSTRUCTOR C I constructed an this well and 1	. 10/25/02 (ERTIFICATION d/or accept rea ts compliance a	Completed 10/31/ sponsibility for with all Washing	02 construction well	
Arte Arte Arte WELL Yiel Yiel Reco	sian pressure lbs per sq in Da sian pressure is controlled by TESTS Pump test made? YES By whom? DRILL d 15 gal /min with 16 ft drawdown a d 0 gal /min with ft drawdown a d 0 gal /min with ft drawdown a very data Wtr Lvl Time Wtr Lvl Time	ER fter 3 hrs fter hrs fter hrs Wtr Lvl	Work Started WELL CONSTRUCTOR C I constructed an this well and 1 ruction standard	. 10/25/02 (ERTIFICATION d/or accept rea ts compliance t s Materials un	Completed 10/31/ sponsibility for with all Washing sed and the info	construction well	stion report
Arte Arte Viel Yiel Yiel Reco	sian pressure lbs per sq in Da sian pressure is controlled by TESTS Pump test made? YES By whom? DRILL d 15 gal/min with 16 ft drawdown a d 0 gal/min with ft drawdown a very data Wtr Lvl Time Wtr Lvl Time 152 5 01 143-6 5 02	ER fter 3 hrs fter hrs fter hrs Wtr Lvl 140	Work Started WELL CONSTRUCTOR C I constructed an this well and i ruction standard above are true	. 10/25/02 (ERTIFICATION d/or accept rea ts compliance t s Materials un to my best know	Completed 10/31/ sponsibility for with all Washing sed and the info *ledge and belie	construction mation m	
Arte Arte 9) WELL Yiel Yiel Reco Cime 00 03	sian pressure lbs per sq in Da sian pressure is controlled by TESTS Pump test made? YES By whom? DRILL d 15 gal/min with 16 ft drawdown a d 0 gal/min with ft drawdown a very data Wtr Lvl Time Wtr Lvl Time 152 5 01 143-6 5 02 138-2 5 04 137-4 5 05	ER fter 3 hrs fter brs fter brs Wtr Lvl 140 137	Work Started WELL CONSTRUCTOR C I constructed an this well and i ruction standard above are true Name CRABTREE	. 10/25/02 (ERTIFICATION d/or accept rea ts compliance t s Materials un to my best know DRILLING CO	Completed 10/31/ sponsibility for with all Washing sed and the info wledge and belie	construction mation m	ti
Arte Arte 9) WELL Yiel Yiel Reco Fime 00 03	sian pressure lbs per sq in Da sian pressure is controlled by TESTS Pump test made? YES By whom? DRILL d 15 gal/min with 16 ft drawdown a d 0 gal/min with ft drawdown a very data Wtr Lvl Time Wtr Lvl Time 152 5 01 143-6 5 02 138-2 5 04 137-4 5 05	ER fter 3 hrs fter hrs fter hrs Wtr Lvl 140 137	Work Started WELL CONSTRUCTOR C I constructed an this well and i ruction standard above are true Name CRABTREE Address 33349 Ref	. 10/25/02 (ERTIFICATION d/or accept reat ts compliance to s Materials un to my best know DRILLING CO lon Road NE Kar	Completed 10/31/ sponsibility for with all Washing sed and the info wledge and belie wgston WA 98346	construction of f	ti
Arte Arte 9) WELL Yield Yield Reco Cime 00 03	sian pressure lbs per sq in Da sian pressure is controlled by TESTS Pump test made? YES By whom? DRILL d 15 gal/min with 16 ft drawdown a d 0 gal/min with ft drawdown a very data Wtr Lvl Time Wtr Lvl Time 152 5 01 143-6 5 02 138-2 5 04 137-4 5 05 of test 10/31/02	ER fter 3 hrs fter hrs fter hrs Wtr Lvl 140 137	Work Started WELL CONSTRUCTOR C I constructed an this well and i ruction standard above are true Name CRABTREE Address 33349 Eg	ERTIFICATION d/or accept reats compliance to s Materials un to my best know DRILLING CO lon Road NE Kin	Completed 10/31/ sponsibility for with all Washing sed and the info wledge and belie igston WA 98346	construction relation relation f	tion conu
Arte Arte Vield Yield Reco Cime 00 03 Date	sian pressure lbs per sq in Da sian pressure is controlled by TESTS Pump test made? YES By whom? DRILL d 15 gal/min with 16 ft drawdown a d 0 gal/min with ft drawdown a very data Wtr Lvl Time Wtr Lvl Time 152 5 01 143-6 5 02 138-2 5 04 137-4 5 05 of test 10/31/02 at 18 gal/min with 17 ft drawdown a	ER fter 3 hrs fter hrs fter hrs Wtr Lvl 140 137	Work Started WELL CONSTRUCTOR C I constructed an this well and i ruction standard above are true Name CRABTREE Address 33349 Eg	ERTIFICATION d/or accept rest ts compliance to s Materials un to my best know DRILLING CO lon Road NE Kin	Completed 10/31/ sponsibility for with all Washing sed and the info wledge and belie igston WA 98346	construction relation relation f	
Arten Arten Arten 9) WELL Yield Yield Reco Cime 00 03 Date aller ten	sian pressure lbs per sq in Da sian pressure is controlled by TESTS Pump test made? YES By whom? DRILL d 15 gal/min with 16 ft drawdown a d 0 gal/min with ft drawdown a very data Wtr Lvl Time Wtr Lvl Time 152 5 01 143-6 5 02 138-2 5 04 137-4 5 05 of test 10/31/02 st 18 gal/min with 17 ft drawdown a	ER fter 3 hrs fter hrs fter hrs Wtr Lvl 140 137 fter 3 hr	Work Started WELL CONSTRUCTOR C I constructed an this well and i ruction standard above are true Name CRABTREE Address 33349 Eg (Signed)	ERTIFICATION d/or accept rest ts compliance to s Materials un to my best know DRILLING CO lon Road NE Kin	Completed 10/31/ sponsibility for with all Washing sed and the info wledge and belie igston WA 98346	Construction well rmation if	ction repor
Arte Arte Arte 9) WELL Yiel Yiel Reco Cime 00 03 Date aller te irtest 0	sian pressure lbs per sq in Da sian pressure is controlled by TESTS Pump test made? YES By whom? DRILL d 15 gal/min with 16 ft drawdown a d 0 gal/min with ft drawdown a very data Wtr Lvl Time Wtr Lvl Time 152 5 01 143-6 5 02 138-2 5 04 137-4 5 05 of test 10/31/02 st 18 gal/min with 17 ft drawdown a gal/min with stem set at ft fo	ER fter 3 hrs fter hrs fter brs Wtr Lvl 140 137 fter 3 hr r hrs	Work Started WELL CONSTRUCTOR C I constructed an this well and i ruction standard above are true Name CRABTREE Address 33349 Eg (Signed)	ERTIFICATION d/or accept reats ts compliance to s Materials un to my best know DRILLING CO lon Road NE Kin Colon Road NE Kin LI Driller)	Completed 10/31/ sponsibility for with all Washing sed and the info wledge and belie igston WA 98346	construction well rmation if	t
Arte Arte Arte (9) WELL Yiel Yiel Reco Time 00 03 Date ailer te irtest 0	sian pressure lbs per sq in Da sian pressure is controlled by TESTS Pump test made? YES By whom? DRILL d 15 gal/min with 16 ft drawdown a d 0 gal/min with ft drawdown a very data Wtr Lvl Time Wtr Lvl Time 152 5 01 143-6 5 02 138-2 5 04 137-4 5 05 of test 10/31/02 st 18 gal/min with 17 ft drawdown a gal/min with stem set at ft fo flow 0 gal/min Date	ER fter 3 hrs fter hrs fter hrs Wtr Lvl 140 137 fter 3 hr r hrs	Work Started WELL CONSTRUCTOR C I constructed an this well and i ruction standard above are true Name CRABTRISE Address 33349 Eg (Signed) (We Contractor's Regis	ERTIFICATION d/or accept rest ts compliance to s Materials un to my best know DRILLING CO lon Road NE Kin Lon Road NE Kin Lon Driller) tration No 097	Completed 10/31/ sponsibility for with all Washing sed and the info wledge and belie igston WA 98346 Licen 702	construction well rmation r f Se No 144 Date 1	t

701027	Waggoner Well $\sqrt{1-2}$	-+C	ノ
WATER WELL REPORT	CURRENT		
Original & 1 st copy - Ecology, 2 nd copy - owner, 3 rd copy - driller	Notice of Intent No. <u>W269974</u>		
COLOGY Construction/Decommission ("x" in circle)	Unique Ecology Well ID Tag No. <u>BAT995</u>		 .
	Water Right Permit No. N/A		
] Decommission ORIGINAL INSTALLATION	Property Owner Name KURT WAGGONER		
Notice of Intent Number	Well Street AddressNE STATE HWY 104		
DeWater Infigation Test Well Other	City PORT GAMBLE County KITSAP	-	x
YPE OF WORK: Owner's number of well (if more than one)	Leastion NM/1/4:1/4-NM/1/4 Sec 7 Two 27 F	- 	
New well Image: Reconditioned Method : Image: Dug Image: Bored Image: Driven Image: Deepened Image: Cable Image: Reconditioned Image: Deepened Image: Deepened	(s, t, r Still REQUIRED)	(<u>20</u> Em.	Or + WWM10
Depth of completed well <u>439</u> ft.			
ONSTRUCTION DETAILS	Lat/Long Lat Deg Lat Min.	/Sec	-
asing \boxtimes Welded <u>6</u> "Diam. from <u>+1</u> ft. to <u>419.10</u> ft.	Long Deg Long M	In/Sec	-
Dian, nonft. toft.	Tax Parcel No. (Required) <u>072702-2-025-2</u>	003	
erforations: 🗍 Yes 🗵 No	CONSTRUCTION OR DECOMMISSIO	N PROCEDURE	:
ype of perforator used	Formation: Describe by color, character, size of material a nature of the material in each stratum penetrated, with at 1	and structure, and east one entry for	the kind and each change
Let of perisin, byin, and no. of peristroinii, tott.	of information. (USE ADDITIONAL SHEETS IF NECE	SSARY.)	
Ianufacturer's Name FJ	BROWN SAND	FROM 0	4 TO
ype PVC Model No.	BROWN SANDY CLAY	4	92
iam. <u>5</u> Stot size <u>10</u> from <u>399</u> ft. to <u>439</u> ft.	BLUE CLAY	92	204
rank, statistic nois $n_{\rm exactly} = \frac{1}{100} \frac{1}{10$	BLUE SILTY SAND W/CLAY	204	211
laterials placed from <u>417</u> ft. to <u>439</u> ft.	FINE SAND & SILT	418	410
urface Seal: 🛛 Yes 🗌 No To what depth? <u>18</u> ft.	LAYERED W/CLAY, H20		439
faterial used in seal BENTONITE	n - 17 - 13		
id any strata contain unusable water?		11: 98300-0	E 4
ype of water?	The second creation we were the second	1	
tend of seams state of	times and but house being build that		
ype: SUBMERSIBLEIC. TEXTIMP: 11/2 4: 1 COSC 107 (24) 10: 07 COSC 147	ipousulitie fur cardenardiane di si moltani este sur la su	· 22 1/2 0; 1 M(- 1 ⁴ .	
ATER LEVELS: Land-surface elevation above mean sea level ft = = = =			<u> </u>
tatic level <u>177</u> If. below top of west Date <u>47 for f1</u>	· · · · · · · · · · · · · · · · · · ·	· · ·	_
Artesian water is controlled by (cap, valve, etc.)	-		
VELL TESTS: Drawdown is amount water level is lowered below static level			
Vas a pump test made? X Yes INO If yes, by whom? GRESHAM	· · · · · · · · · · · · · · · · · · ·		
'ield; 16.5gal./min, with 49.9ft, drawdown after 1+hrs.			
'ield:gal./min. withft. drawdown afterhrs.	FL		
lecovery data (time taken as zero when pump turned off) (water level measured from			\
ell top to water level)		`- - -	-11
<u>OMIN 189.6</u>	<u>₹ MAY</u> ()3 2011	
			?/
Date of test 4/18/11			/
ailer test gal./min. withft. drawdown afterhrs.	- CSOU	RCES /	
sirtest 10 gal/min, with stem set at 208ft, for 1 hrs.			
	Start Date 03/29/11 Completed	Date <u>4/04/1</u>	<u> </u>
intesian flow g.p.m. Date			
emperature of water Was a chemical analysis made?			•
Intesian flow g.p.m. Date emperature of water Was a chemical analysis made?		a with all Wash	ungton well
Artesian flow g.p.m. Date emperature of water Was a chemical analysis made?	esponsibility for construction of this well, and its compliance re true to my best knowledge and belief.	e.with all_Wash	ington well
wrtesian flowg.p.m. Date emperature of waterWas a chemical analysis made? X YesNo VELD CONSTRUCTION CERTIFICATION: I constructed and/or accept.r onstruction standards Materials used and the information reported above an X Dritler. I Engineer T Trainee Name from CRAIG A. GRESHAM	esponsibility for construction of this well, and its compliance re true to my best knowledge and belief. Drilling Company GRESHAM WELL DRILLING	e.with all_Wash	ington well
Artesian flowg.p.m. Date emperature of water Was a chemical analysis made?	esponsibility for construction of this well, and its compliance re true to my best knowledge and belief. Drilling Company GRESHAM WELL DRILLING Address P O BOX 1600	INC	ington well

ECY 050-1-20 (Rev 02/10) If you need this document in an alternate format, please call the Water Resources Program at 360-407-6872. Persons with hearing loss can call 711 for Washington Relay Service. Persons with a speech disability can call 877-833-6341.

	77/26-71
File Original and First Copy with he Division of Water Resources	Lo Community Moll Amplication No. 02642
Second Copy — Owner's Copy Fhird Copy — Driller's Copy	
	Permit No
(1) OWNER: Name Pope & Talbot Inc.	Address P.O. Box 217 PortGamble, Wa. 9836
2) LOCATION OF WELL: COMPANY KITSAP	NE 1/4 NE , NW 4 Sen 7 27 N B 2 EWA
ley hour and distance from center or subdivision comer	
searing and distance from section of subdivision corner	
(3) PROPOSED USE: Domestic 🗆 Industrial 🗆 Municipa	E (10) WELL LOG:
Irrigation 📑 Test Well 🗋 Other	Formation: Describe by color, character, size of material and structure, and shown thickness of aquifers and the kind and nature of the material in each
(A) STITUE OF WORK, Owner's number of well # 7	stratum penetrated, with at least one entry for each change of formatio
(4) TYPE OF WORK: (if more than one)	MATERIAL FROM TO
New well C. Method: Dug 📋 Bored Despened 🗌 Cable - C. Drive	Brinsith and 0 10
Reconditioned 🗌 Rotary 🗌 Jetter	any silts day 10 118
5) DIMENSIONS: 12	" sandy silt 118 142
D-meter of well 452 # Depth of completed well 44%	# Organic silt 142 144
	- Gran silt, sand, goon
6) CONSTRUCTION DETAILS:	144 185
Casing installed: 12 " Diam tom 0 th to 440	" Gran vole and & sitt 185 323
Threaded	n. Center sand 323 325
Welded []	#. Silt varying lanen clana
	to sanda Barote boulda
Perforations: Yes 🗆 No 🗷	at 397 / 325 440
Type of perforator used	Gravel w/ silt layers 440 442
SIZE of perforations in. by	* E to med and wel some
perforations from	1. gravel. Grades fine
perforations from	t. downingids 442 447
	Silt fine rand 447 45
Screens: Yes A No	Till 450 452
Manufacturer's Name	Press
Type PS Blot size 40 topm 438 th to 448	#.
Diam. Slot size from fit to	ft.
G // /2	LOG PREPARED BY
Gravel packed: Yes No D Size of gravel:	·····
Gravel placed from	ROBINSON & NOBLE INC
Surface seal: you I No I To what depth?	n GROUND WATER GEOLOGUD
Material used in seal BENTONITE	
Did any strata contain unusable water? Yes 🗌 🕺	AC CM/164 5/7/90
Type of water?	
Method of sealing strata off	
Time: HP	THE
	- RECEIVE
8) WATER LEVELS: Land-surface elevation above mean sea level	.rt 1990
tatic level 152.5 ft. below top of well Date 4/23/	
rtesian pressure	
Artesian water is controlled by	
Drawdown is smouth water level is	
9) WELL TESTS: lowered below static level	Work started 3/7/90 , 19 Completed 5/2-5/ , 19
Vas a pump test made? Yes No I If yes, by whom?	WELL DRILLER'S STATEMENT:
field: 50 gal./min. with 139./ n. drawdown after C	
10	This well was drilled under my jurisdiction and this report
The second data (TITAL TREAT BE TER) WHEN NUMD TURNED UNIT (WEVER	NAME BURT DRILLING CO.
measured from well top to water level)	1 IT A BLE
measured from well top to water level) Time Water Level Time Water Level Time Water L	(Person, firm, or corporation) (Type or print)
measured from well top to water level) Time Water Level Time Water Level Time Water L 10 min 2.22.9 140 1850	(Person, firm, or corporation) (Type or print)
measured from well top to water level) Time Water Level Time Water Level Time Water L 10 min 122-9 140 185el 0 2095 180 182-3	(Person, firm, or corporation) (Type or print) Address. Poul SBO, WA
measured from well top to water level) Time Water Level Time Water Level Time Water L 10 mig 122-9 140 185-0 0 209-5 180 182-3 -0 197-1	Address Pousso, firm, or corporation) (Type or print)
measured from well top to water level) Time Water Level Time Water Level Time Water L 10 min 2229 140 1850 0 209-5 1.80 182.3 10 197.1 Date of test 4/23,24/90	(Person, firm, or corporation) (Type or print) Address Paul SBa, WA [Signed]. Hunge But
messured from well top to water level) Time Water Level Time Water Level Time Water L 10 mig 222.9 140 18560 LO 2095 180 182.3 LO 1971 Date of test 4/23,24/90 Sailer test gal/min. with ft. drawdown after.	(Person, firm, or corporation) (Type or print) Address. Paul SBQ, WA [Signed]. Hunge But (Well Driller)

- **- Co**

Chighial & ISLCODY ECOLOGY Zild CODY OWNER Sid CODY amon	AHB41	4	
onstruction/Decommission (x in circle) Thompson Well	Unique Ecology Well ID Tag No	<u> </u>	
Construction	Water Right Permit No	<u> </u>	
of Intent Number	Property Owner NameSTEVE_THOMPS	ON	<u> </u>
ROPOSED USE XX Domestic Industrial Municipal	Well Street Address STATE HWY 104		
DeWater Irrigation Test Well Other	Cuty POILSBO County K	TTSAP	
YPE OF WORK Owner's number of well (if more than one)	Location $\frac{NW}{1/4} \frac{1}{4} \frac{NW}{1/4} \frac{1}{8} \frac{V}{1/4} \frac{V}{1/$	27 R ²	EWM
New Well Reconditioned Method Dug Bored Driven		wii <u> </u>	or WWM
INCREASE Diameter of well 6 inches dulled 212 ft	Lat/Long Lat Deg]	at Min/Sec	
Depth of completed well 212 ft	REQUIRED) Long Deg	Long Min/Sec	
ONSTRUCTION DETAILS	Tax Parcel No		
asing $XWelded = 6$ Diam from $+1$ ft to 202 ft	CONSTRUCTION OR DECOMMISSIO	ON PROCEDU aterial and struct	RE wre and t
Liner installed Diam from It to It	kind and nature of the material in each stratum pen	etrated with at	east one
	entry for each change of information Indicate all v (USE ADDITIONAL SHEETS IF NECESSARY)	ater encountere	đ
ype of perforator used	MATERIAL	FROM	то
IZE of perfsin byin and no of perfs fromft toft			
creens XYes No K Pac Location TOP	OVERBURDEN	0	1
lanufacturer's Name	BROWN SANDY HARDPAN	1	47
iam <u>6</u> Slot Size <u>8</u> from <u>202</u> ft to <u>207</u> ft	BROWN SILTY FINE SAND	47	51
1am <u>6</u> Slot Size <u>10</u> from <u>207</u> ft to <u>212</u> ft	BROWN SANDY SILTY CLAY	51	58
ravel/Filter packed Yes XX No Size of gravel/sand	BROWN FINE SAND	58	62
faterials placed fromft toft	BROWN SANDY SILT	62	66
furface Seal XXYes No To what depth? <u>18</u> ft	GRAY SANDY SILT	00 78	105
laterials used in seal <u>DENTONTIE</u>		105	105
'ype of water'Depth of strata	GRAY SILTY CLAY	105	184
Aethod of sealing strata off	GRAY STLTY SANDY CLAY	184	202
"UMP Manufacturer's Name <u>GOULDS</u>	GRAY SAND, SILT, H20	202	205
ype_SUBMERSTBLE_181,51.5HP_1 =	GRAY GRAVELLY CLAY	205	206
VATER LEVELS Land surface elevation above mean sea level $\frac{1}{10000000000000000000000000000000000$	GRAY SAND, GRAVEL, H2O	206	208
rtesian pressurelbs per square inch Date	GRAY SAND, H20	208	211
rtesian water is controlled by	GRAY SANDY CLAY	211	212
(cap valve etc.)			
Vas a pump test made? \square Yes \square No If yes by whom? <u>GRESHAM</u>			
<i>ield</i> 21 gal/min with 83 ft drawdown after 1+ hrs			
ieldgal/min_withft drawdown afterhrs ieldgal/min_withft drawdown afterhrs			
ecovery data (time taken as zero when pump turned off)(water level measured from		4 000 inter	
ime Water Level Time Water Level Time Water Level	JUL 0 3	2002	
FULL RECOVERY IN 18 MIN			<u> </u>
<u>ate of test</u> 6/14/02			
ailer test_22_gal /min_with_86_ft_drawdown after_1_hrs			
Intestgal/mun with stem set atft forhrs			
gpm Date	Start Date 6/05/02 Completed Da	te_6/11/0	2
emperature of waterWas a chemical analysis made?		ompliance wi	h all
emperature of waterWas a chemical analysis made? 🕮 es 🗌 No ELL CONSTRUCTION CERTIFICATION I constructed and/or accent response	Onsidility for construction of this well and its c		
emperature of waterWas a chemical analysis made? 🖾 Yes 🗌 No ELL CONSTRUCTION CERTIFICATION I constructed and/or accept responses Vashington well construction standards Materials used and the information re-	eported above are true to my best knowledge a	nd belief	
emperature of waterWas a chemical analysis made? Difference ELL CONSTRUCTION CERTIFICATION I constructed and/or accept responses Vashington well construction standards Materials used and the information response Volume Engineer Trainee Name CRAIG A GRESHAM CRAIG A	eported above are true to my best knowledge ar Drilling Company GRESHAM WELL	nd belief DRILLING	INC
emperature of waterWas a chemical analysis made? Wes No ELL CONSTRUCTION CERTIFICATION I constructed and/or accept responses No Vashington well construction standards Materials used and the information responses Volume Engineer Trainee Name CRAIG A GRESHAM Initial construction standards Initial construction responses	ported above are true to my best knowledge at Drilling Company <u>GRESHAM WELL</u> P 0 BOX 1600	nd belief DRILLING	INC

Deale

- Fail Oracidary Fr

FG 050 30

If trainee, licensed driller's Signature and License no _

C:Users/CReeburn/Desktop/CAD - working folder/Port Gamble/Port Gamble Loss MWells. v0.3.dwg | F/GURE 1 - LOSS MW-1 | Mod: 11/11/2013, 15:51 | Plotteet: 11/11/2013, 15:52 | CReeburn

C:Users/CReeburn/Desktop/CAD - working folder/Port Gamble/Port Gamble Loss MWells. v0.3 dwg | FIGURE 2 - LOSS MW-2 | Mod: 11/11/2013, 15-51 | Plottect 11/11/2013, 15-52 | CReeburn

C:Users/CReeburn/Desktop/CAD - working folder/Port Gamble/Port Gamble Loss MWells. v0.3 dwg | FIGURE 4 - LOSS MW4 | Mod: 11/11/2013, 15-51 | Plottect: 11/11/2013, 15-52 | CReeburn

C:Users/CReeburn/Desktop/CAD - working folder/Port Gamble/Port Gamble Loss MWells. v0.3 dwg | FIGURE 5 - LOSS MW-5 | Mod: 11/11/2013, 15-51 | Plottect 11/11/2013, 15-52 | CReeburn

C:WsersCRaeburnDesktop/CAD - working folder/Port Gamble/Port Gamble Loss MWells v0.3 dwg | FIGURE 6 - LOSS MW-6 | Mod: 11/12/2013, 13:10 | Plottect 11/12/2013, 13:11 | CRaeburn

C:Users/CReeburn/Desktop/CAD - working folder/Port Gamble/Port Gamble Loss MWells. v0.3 dwg | FIGURE 7 - LOSS MW-7 | Mod: 11/12/2013, 13:10 | Plottect 11/12/2013, 13:11 | CReeburn

Golder Associates

APPENDIX B TEST PIT LOCATIONS AND LOGS

Vab Document: M:/Projects/2013/1300649_OPG_Port_Gamble/MXD/1300649F013_TestPit_Locations_AA.mxd / Modified 11/15/2013 1:40:27 PM by AAustreng / Exported 11/15/2013 1:49:25 PM by AAustreng

MEMORANDUM

September 10, 2012

To: Brian Hansen & Al Fure Triad Associates

From: James M. Brisbine, P.E.

RE: GEOTECHNICAL FEASIBILITY EVALUATION Port Gamble Upland LOSS Kitsap County, Washington Terracon Project No. 81125065

This memo briefly presents our geotechnical observations, findings, and conclusions regarding the feasibility of constructing a Large On-Site Septic System (LOSS) in the upland area southwest of Port Gamble. We understand that the LOSS would consist of a shallow drainfield receiving controlled volumes of residential-strength (or better) effluent from numerous nearby single-family residences.

SUBSURFACE CONDITIONS

On July 10 & 11, 2012, a Terracon geologist observed the excavation of 34 exploratory test pits advanced across the site, extending to depths ranging from about 4 to 11 feet below ground surface. These test pits revealed a fairly uniform soil sequence comprising a surficial duff and topsoil layer over an upper recessional sand layer over a weathered till layer over unweathered glacial till. All test pits were terminated in the glacial till deposit. None of the test pits encountered groundwater at the time of digging, but we anticipate that perched groundwater likely forms atop the glacial till horizon during the wet season. The following table summarizes the near-surface soil conditions observed within each test pit.

Soil Laver	Typical Composition	Typical Density	Observed Thickness (feet)						
con Eayer	Typical composition	Typical Density	Min.	Ave.	Max.				
Duff / Topsoil	Sand & Silt with organics	Soft / Loose	0.5	0.55	0.7				
Upper Sand	Silty Sand	Loose to Medium Dense	1.2	1.4	1.7				
Weathered Till	Silty Sand with gravel	Medium Dense	1.2	2.1	3.0				
Glacial Till	Silty Sand with gravel	Dense to Very Dense			>7				

CONCLUSIONS

In our opinion, based on the above-described subsurface conditions, the proposed construction of a LOSS at the project site appears to be geotechnically feasible. We infer that the upper sand layer and underlying weathered till layer will provide moderate percolation rates for effluent infiltration and dispersal, and both of these layers were observed to be laterally extensive. As part of subsequent design-phase work, additional field evaluations should be performed to quantify percolation rates and seasonal groundwater levels within the LOSS area.

Terracon Consultants, Inc. 21905 – 64th Avenue W, Suite 100 Mountlake Terrace, WA 98043 [425] 771-3304

	TES	ST P	ΝT	L(OG NO. TF	P -1					I	Page 1 of	1
PF	ROJECT: Port Gamble Upland LOSS				CLIENT: Olym	npic Pro	oper	ty Gr	oup,	LLC			
SI	Site TE:			_									
	Port Gamble, Washington	1											
LOG	LOCATION	L)	IONS	ΥPE	STS	MBER	STF	RENGTH 빈	TEST	(%)	П рсf)	LIMITS	set
APHIC		PTH (ER LE	PLEJ	ESUL7	LE NU	ГТҮРЕ	RESSIVENCE	AIN (%)	VATE	RY UN IGHT (LL-PL-PI	cent Fil
GR	ПЕРТН	B	WA1 OBSE	SAM	문卒	SAMP	TESI	STRE	STR/				Pen
7 <u>71</u> 8	Forest Duff, Topsoil												
	SILTY SAND (SM), with trace gravel, tan-brown, loose to medium dense, moist	-	-	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~									
	1.8 SILTY SAND (SM), with trace gravel, brown-gray with mottling, medium dense, moist, (Weathered		_		2	S-1				12			
	Glacial Till) Scattered roots to 3 feet	-	-										
				m	2	S-2							15
	4.3 SILTY SAND (SM), with trace gravel, gray, dense, moist, (Sandy Glacial Till)												
		5 -											
		-											
		-	-										
		_											
		-		<u>6</u> 07		0.0							
	10.0 Test Pit Terminated at 10 Feet	- 10-			2	5-3							
	Stratification lines are approximate. In-situ, the transition may be grad	ual.											
Advar	ncement Method:					Notes:							
Ira	Icknoe					All test p	it locat	tions sele	cted by	Jensen	Enginee	ring, Inc.	
Aban Tra	donment Method: cckhoe												
	WATER LEVEL OBSERVATIONS	1.				Test Pit St	arted:	7/10/2012	2	Test	Pit Com	pleted: 7/10/20)12
	No observed caving					Excavator	Seton	Const.		Oper	rator:		
		Mou	ntlake	Terra	ce, Washington	Project No	o.: 8112	25065					

	TE	ST F	PIT	L	og no. Tr	P-2						Page 1 of	1
PR	OJECT: Port Gamble Upland LOSS Site				CLIENT: Olyn	npic Pro	oper	ty Gr	oup,	LLC			
SIT	E: Port Gamble, Washington												
GRAPHIC LOG	LOCATION	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	FIELD TEST RESULTS	SAMPLE NUMBER	TEST TYPE	STRENGTH	STRAIN (%)	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)	Atterberg Limits	Percent Fines
	 <u>Forest Duff</u>, Topsoil <u>SILTY SAND (SM)</u>, with trace gravel, tan-brown, loose to medium dense, moist 		_										
	1.8 <u>SILTY SAND (SM)</u> , with trace gravel, brown-gray with mottling, medium dense, moist, (Weathered Glacial Till)		_	an	2	S-1							
	4.2		_	en	2	S-2							
	moist, (Sandy Glacial Till)	5 -	-										
	10.0 Toot Did Toomsing days of 40 Front	 - 10-		m	2	S-3							
	Test Pit Terminated at 10 Feet												
;	Stratification lines are approximate. In-situ, the transition may be grad	ual.											
Advand	comment Method:					Notes: All test p	it locat	tions sele	cted by	Jensen	Enginee	ring, Inc.	
	WATER LEVEL OBSERVATIONS	1.				Test Pit St	arted:	7/10/2012	2	Test	Pit Com	pleted: 7/10/20)12
	No observed caving	219 Mou	05 64tl ntlake	h Ave Terra	e. W, Suite 100 ce, Washington	Excavator: Project No	Seton	Const. 25065		Oper	ator:		

	TEST PIT LOG NO. TP-3 Page 1 of 1												
PR	OJECT: Port Gamble Upland LOSS				CLIENT: Olym	pic Pro	oper	ty Gro	oup, l	LLC			
SIT	Site E:			_									
•	Port Gamble, Washington												
00	LOCATION		'EL	ΡE	t.a	IBER	STF	RENGTH	TEST	(%	r cf)	ATTERBERG LIMITS	sa
HICL		HT (FI	R LEV	L L	D TES	NUN	ΥPE	SSIVE GTH	1 (%)	ATER ENT (r UNI HT (p		nt Fine
GRAF		DEP	NATE BSER	AMP	FIEL	AMPLE	EST 1	MPRE	TRAIN	CONT	DRY	LL-PL-PI	Perce
. <u>71 1^X. 71</u>	DEPTH Forest Duff Topsoil		-0	0 0		/S	-	8″	0)				
	0.5 SILTY SAND (SM), with trace gravel, tan-brown,	-											
	loose to medium dense, moist	-											
	1.9			M	2	S-1							
	<u>SILTY SAND (SM)</u> , with trace gravel, brown-gray with mottling, medium dense, moist, (Weathered	-											
	Glacial Till)	-											
	Scattered roots to 3.5 feet												
	4.2		-										
	SILTY SAND (SM), with trace gravel, gray, very dense, moist, (Sandy Glacial Till)												
		5-											
	5.7 Test Pit Terminated at 5.7 Feet	-											
	Stratification lines are approximate. In-situ, the transition may be grad	lual.											
Adver	rement Method:					Notori							
Auvano	ennenit wieu iou.					All test p	it locat	ions sele	cted by J	ensen I	Enginee	ring, Inc.	
Aband	onment Method:												
	WATER LEVEL OBSERVATIONS					Teet Dit O	arted	7/10/2012	,	Teot	Pit Com	nleted: 7/10/20	112
	No groundwater seepage observed		זכ	6	acon	Excavator	Seton	Const	-	Oper	ator	pieleu. //10/20	/12
	No observed caving	219 Mou	05 64th	n Ave	. W, Suite 100 ce. Washington	Project No	0.: 8112	25065		Oper			
		wou	aure	. und	so, reconnigion	1				1			

	Т	EST P	IT	L	OG NO. TI	P-4					F	Page 1 of	1
PR	OJECT: Port Gamble Upland LOSS				CLIENT: Olyr	npic Pro	oper	ty Gr	oup,	LLC			
SIT	Site F·			_									
	Port Gamble, Washington												
LOG	LOCATION	f.)	VEL	ΥPE	s	MBER	STF	RENGTH U	TEST	(%)	T ocf)	ATTERBERG LIMITS	es
PHIC		I) HTC	ERLE	LE T	LD TE	IN II	TYPE	ESSIV NGTH	(%) NI	ATEF TENT	≷Y UN GHT (ent Fir
GRA		DEI	WATI OBSE	SAM	FIE	SAMPL	TEST	OMPR	STRA	CON	MEI		Perc
<u>xt /x - xt</u>	<u>Forest Duff</u> , Topsoil							0					
	SILTY SAND (SM), with trace gravel, tan-brown, loose to medium dense, moist												
	2.2		-										
71.177	SILTY SAND (SM), with trace gravel, brown-gray with mottling, medium dense, moist. (Weathered	/											
2 · · · · · · · · · · · · · · · · · · ·	Glacial Till) Scattered roots to 3.5 feet												
	4.8 <u>SILTY SAND (SM)</u> , with trace gravel, gray, dense to very dense, moist, (Sandy Glacial Till)	e 5-	-										
		_	-										
			-										
		-											
		_											
2				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~									
	10.0 Test Pit Terminated at 10 Feet	10		Ŭ	2	S-1							
-													
5													
5													
	Stratification lines are approximate. In-situ, the transition may be g	gradual.											
Advanc	ement Method:					Notes: All test n	it locat	tions sele	cted by	Jensen	Enginee	ring, Inc.	
									- 3		5	-	
Abando	onment Method:												
	WATER LEVEL OBSERVATIONS					Test Pit 9	arted.	7/10/2012	,	Teet	Pit Com	nleted: 7/10/20)12
5	No groundwater seepage observed		2		acon	Excavator	Seton	Const.	-	Oner	rator:	picicu. 1/10/20	
2	No observed caving	2190 Mour	05 64th ntlake 1	n Ave Terra	e. W, Suite 100 ce, Washington	Project No	0.: 8112	25065					

TEST PIT LOG NO. TP-5 Page 1 of 1													
PR	OJECT: Port Gamble Upland LOSS	CLIENT: Olyn	Ilympic Property Group, LLC										
SITE													
	Port Gamble, Washington												
од	LOCATION		EL	Ы	۲.	BER	ST	RENGTH	TEST	(%	. (ATTERBERG LIMITS	Ś
HICL		LH (Ft	R LEV	<u>≻</u> щ	D TES	MUN	ΥΡΕ	SSIVE	(%)	TER ENT (HT (po		It Fine
GRAF		DEP.	VATE	AMPI	FIELD	WPLE	ESTT	MPRE	TRAIN	CONT	DRY	LL-PL-PI	Percel
	DEPTH Forest Duff Topsoil		>ō	Ś		SA	⊢ 	°0 CO	S				
1/	0.7												
	SILTY SAND (SM), with trace gravel, tan-brown, loose to medium dense, moist	-	-										
	SILTY SAND (SM), with trace gravel, brown-gray with mottling, medium dense, moist, (Weathered Glacial Till)												
	Scattered roots to 3.5 feet	_											
	5.0 SILTY SAND (SM), with trace gravel, grav, very	5 -	-										
	dense, moist, (Sandy Glacial Till)	_	_										
		-	-	sm.	2	S-1				8			45
	Test Pit Terminated at 8 Feet	-								-			
	Stratification lines are approximate. In-situ, the transition may be gradu	al.											
Advancement Method:					Notes: All test pit locations selected by Jensen Engineering, Inc.								
Abando													
WATER LEVEL OBSERVATIONS						Test Pit Started: 7/10/2012 Test Pit Completed: 7/10					pleted: 7/10/20)12	
No observed caving			05 64			Excavator	Seton	Const.		Oper	ator:		
	219 Moui	05 64th ntlake T	1 Ave Ferra	. vv, Suite 100 ce. Washington	Project No	D.: 8112	25065						

	TE	OG NO. TF	6 NO. TP-6						Page 1 of 1						
PR	OJECT: Port Gamble Upland LOSS		CLIENT: Olympic Property Group, LLC												
SITE:															
	Port Gamble, Washington				i						i	ATTERREDO			
90	LOCATION	(<u>†</u>	√EL ONS	ΥPΕ	L so	ABER	ST	RENGTH ш	TEST	(%)	g g⊥	LIMITS	es		
HICI		TH (F	R LE	Ц Ц Ц	D TES	л х	ΥPE	ESSIV IGTH	(%) N	ATER ENT	Y UNI HT (F		int Fin		
GRAF		DEP	NATE	AMP	FIEL	MPLI	EST -	MPRE	STRAII	CON	WEIG	LL-PL-PI	Perce		
71 X. V	DEPTH Forest Duff Topsoil		-0	S		SF	-	8″	00						
1/ <u>1/</u>	0.7														
	SILTY SAND (SM), with trace gravel, tan-brown, loose to medium dense, moist	-	_												
	SILTY SAND (SM), with trace gravel, brown-gray with mottling, medium dense, moist, (Weathered Glacial Till)														
	Scattered roots to 3.5 feet														
	<u>SILTY GRAVELLY SAND (SM)</u> , with trace gravel, gray, very dense, moist, (Sandy Glacial Till)	-	_												
	5.0 Toot Bit Torminated at 5 East	- 5-													
Stratification lines are approximate. In-situ, the transition may be gradual.															
Advancement Method: Abandonment Method:						Notes: All test pit locations selected by Jensen Engineeri					ring, Inc.				
WATER LEVEL OBSERVATIONS								Test Pit Started: 7/10/2012				Test Pit Completed: 7/10/2012			
No groundwater seepage observed			26		JCON	Excavator	Seton	Const.		Oper	ator:				
			21905 64th Ave. W, Suite 100					Project No : 81125065							
	TES	ST P	TI	LC	OG NO. TF	P -7					F	² age 1 of ²	1		
------------------	--	---------------	-------------------------	-----------------	-----------------------------------	----------------------	-----------	-------------------------	------------	---------------------	------------------------	------------------------------------	--------------		
PR	OJECT: Port Gamble Upland LOSS				CLIENT: Olym	npic Pro	oper	ty Gro	oup,	LLC					
SIT	Site E·														
011	Port Gamble, Washington														
Ő	LOCATION	(;	NS NS	ЪЕ	F	BER	STF	RENGTH	TEST	(%	cl)	ATTERBERG LIMITS	o v		
GRAPHIC L	ПЕРТН	DEPTH (Ft	WATER LEV OBSERVATIC	SAMPLE TY	FIELD TES	SAMPLE NUM	TEST TYPE	COMPRESSIVE STRENGTH	STRAIN (%)	WATER CONTENT (°	DRY UNIT WEIGHT (po	LL-PL-PI	Percent Fine		
<u>71 / 7</u>	Forest Duff, Topsoil														
	SILTY SAND (SM), with trace gravel, tan-brown, loose to medium dense, moist	_	_												
	SILTY SAND (SM), with trace gravel, brown-gray with mottling, medium dense, moist, (Weathered Glacial Till) Scattered roots to 3 feet	_	_												
	4.0 <u>SILTY SAND (SM)</u> , with gravel, gray, very dense, moist, (Sandy Glacial Till)	- 5 -	-												
		_	-												
		- - 10-	-												
	11.0		_	en p	2	S-1									
	Test Pit Terminated at 11 Feet														
	Stratification lines are approximate. In-situ, the transition may be gradu	al.			_										
Advanc	ement Method:					Notes: All test p	it locat	ions selec	cted by .	Jensen I	Enginee	ring, Inc.			
	WATER LEVEL OBSERVATIONS		_	_		Test Pit St	arted:	7/10/2012	!	Test	Pit Com	 pleted: 7/10/20)12		
	No groundwater seepage observed No observed caving		26		JCON	Excavator	Seton	Const.		Oper	ator:				
		219 Mour	05 64th htlake 1	n Ave Ferrac	e. W, Suite 100 ce. Washington	Project No	.: 8112	25065							

	TES	ST P	TI	L	OG NO. TP	P-8					F	Page 1 of	1
PR	OJECT: Port Gamble Upland LOSS Site				CLIENT: Olym	pic Pro	per	ty Gr	oup,	LLC			
SIT	E: Bart Comble Weekinsten												
0			ر ۱	ш		R	STE	RENGTH	TEST			ATTERBERG	
GRAPHIC LOC		DEPTH (Ft.)	WATER LEVEL OBSERVATION	SAMPLE TYPI	FIELD TEST RESULTS	AMPLE NUMBE	TEST TYPE	OMPRESSIVE STRENGTH	STRAIN (%)	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)	LIMITS	Percent Fines
<u>74 1</u> 2 - 74	DEPTH Forest Duff, Topsoil					S		ŏ					
	0.7 SILTY SAND (SM), with trace gravel, tan-brown, loose to medium dense, moist		-										
	SILTY SAND (SM), with gravel, brown-gray with mottling, medium dense, moist, (Weathered Glacial Till) Scattered roots to 3.5 feet	-	-										
	4.2 <u>SILTY SAND (SM)</u> , with gravel, gray, very dense, moist, (Sandy Glacial Till)	5-											
	5.5 Test Pit Terminated at 5.5 Feet												
	Stratification lines are approximate. In-situ, the transition may be gradu	al.	<u> </u>		· · ·				. <u> </u>	. <u> </u>	. <u> </u>	·	
Advan	cement Method:					Notes: All test p	it locat	ions sele	cted by	Jensen	Enginee	ring, Inc.	
Aband	onment Method:												
	WATER LEVEL OBSERVATIONS			-		Test Pit St	arted:	7/10/2012	2	Test	Pit Com	pleted: 7/10/20)12
	No observed caving	210				Excavator:	Seton	Const.		Oper	ator:		
		Mour	ntlake	Ferra	ce, Washington	Project No	.: 8112	25065					

TES	ST P	TI	LC	DG NO. TF	- 9					F	Page 1 of 1	1
PROJECT: Port Gamble Upland LOSS				CLIENT: Olyn	npic Pro	oper	ty Gro	oup,	LLC		<u></u>	
Site			_									
Port Gamble, Washington												
ဗ္မ LOCATION		(EL	ΡE	t a	IBER	ST	RENGTH	TEST	(%	ر _	ATTERBERG LIMITS	s
	TH (Ft	R LEV VATIO	Ц Ц	D TES SULTS	NUN	ΥPE	SSIVE GTH	(%) N	ATER ENT (r UNIT (p		nt Fine
GRAF	DEP	WATE	SAMP	FIEL	AMPLE	LEST 1	MPRE	STRAIN	CONT	VEIG	LL-PL-PI	Perce
DEPTH		. 0	0,		Ś		8	•,				
<u>SILTY SAND (SM)</u> , with trace gravel, tan-brown,												
loose, moist	-											
2.0	_											
SILTY SAND (SM) , with gravel, brown-gray with motting, medium dense, moist, (Weathered Glacial												
Scattered roots to 3 feet	-	-										
4.2 SILTY SAND (SM), with gravel, gray, dense,	-											
moist, (Sandy Glacial Till)	5-											
	-											
	-											
	_											
	-											
	10-											
11.0	_		M	>	S-1							
Test Pit Terminated at 11 Feet												
Stratification lines are approximate. In-situ, the transition may be gradu	al.			1			1					
Advancement Method:					Notes:							
					All test p	oit locat	tions sele	cted by .	Jensen I	Enginee	ring, Inc.	
Abandonment Method:												
WATER LEVEL OBSERVATIONS		-	_		Test Pit S	tarted:	7/10/2012	2	Test	Pit Com	pleted: 7/10/20	12
No groundwater seepage observed No observed cavina		2		JCON	Excavator	: Seton	Const.		Oper	ator:		
g	219 Mour	05 64th htlake]	n Ave. Ferrac	. W, Suite 100 ce. Washington	Project No	o.: 8112	25065					

TES	ST P	IT I	LC	DG NO. TP	-10					I	Page 1 of	1
PROJECT: Port Gamble Upland LOSS				CLIENT: Olym	npic Pro	oper	ty Gr	oup,	LLC		-	
SITE:												
Port Gamble, Washington												
BOLICATION	DEPTH (Ft.)	WATER LEVEL DBSERVATIONS	SAMPLE TYPE	FIELD TEST RESULTS	AMPLE NUMBER	TEST TYPE	STRENGTH STRENGTH STRENGTH	STRAIN (%)	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)	LL-PL-PI	Percent Fines
DEPTH Forest Duff, Topsoil SILTY SAND (SM), with trace gravel, tan-brown, loose to medium dense, moist 1.8 SILTY SAND (SM), with gravel, brown-gray with mottling, medium dense, moist, (Weathered Glacia Till) 3.0 Scattered roots to 3 feet SILTY GRAVELLY SAND (SM), gray, very dense,		-	0,		<u>v</u>							
Test Pit Terminated at 3.8 Feet												
Stratification lines are approximate. In-situ, the transition may be gra	dual.	1	1	<u> </u>		<u> </u>	1					
Advancement Method: Abandonment Method:					Notes: All test p	it locat	tions sele	cted by .	Jensen	Enginee	ring, Inc.	
WATER LEVEL OBSERVATIONS					Test Pit Si	arted:	7/10/2012	2	Test	Pit Com	pleted: 7/10/20)12
No groundwater seepage observed		2		acon	Excavator	Seton	Const.		Oper	rator:		
	219 Mou	05 64th ntlake	n Ave Terra	e. W, Suite 100 ice, Washington	Project No	o.: 8112	25065					

	TES	ST P	IT	LC	DG NO. TP	-11					I	Page 1 of	1
PR	OJECT: Port Gamble Upland LOSS				CLIENT: Olym	pic Pro	oper	ty Gr	oup,	LLC			
SIT	E:												
	Port Gamble, Washington					ſŕ				1	r	ATTERBERG	
GRAPHIC LOG	LOCATION	DEPTH (Ft.)	WATER LEVEL DBSERVATIONS	SAMPLE TYPE	FIELD TEST RESULTS	AMPLE NUMBEF	TEST TYPE	OMPRESSIVE STRENGTH	STRAIN (%)	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)	LIMITS	Percent Fines
<u>71 1^X 71</u>	DEPTH Forest Duff, Topsoil					S		8					-
<u>1.544</u>	0.7 <u>SILTY SAND (SM)</u> , with trace gravel, tan-brown, loose to medium dense, moist		_	<u>en</u>	2	S-1							
	2.0 <u>SILTY SAND (SM)</u> , with gravel, brown-gray with mottling, medium dense, moist, (Weathered Glacial Till) Scattered roots to 3 feet		-										
	4.0 <u>SILTY GRAVELLY SAND (SM)</u> , gray, very dense, moist, (Sandy Glacial Till) 5.0	-											
	Summer and the street approximate. In-situ, the transition may be grad												
Advanc Abando	onment Method:					Notes: All test p	bit locat	iions sele	cted by	Jensen	Enginee	ring, Inc.	
	WATER LEVEL OBSERVATIONS					Test Pit S	tarted.	7/10/201:	2	Test	Pit Com	pleted: 7/10/20	 012
	No groundwater seepage observed		2		acon	Excavator	: Seton	Const.	_	Ope	rator:		
		219 Mou	05 64t ntlake	h Ave Terra	e. W, Suite 100 ce, Washington	Project No	o.: 8112	25065					

TES			_C	DG NO. TP	-12					I	Page 1 of	1
PROJECT: Port Gamble Upland LOSS				CLIENT: Olym	npic Pro	oper	ty Gro	oup,	LLC			
SITE:			_									
Port Gamble, Washington				· · ·								
DOLUCATION	DEPTH (Ft.)	WATER LEVEL DBSERVATIONS	SAMPLE TYPE	FIELD TEST RESULTS	AMPLE NUMBER	TEST TYPE	STRENGTH	STRAIN (%)	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)	LIMITS	Percent Fines
DEPTH <u>시설</u> 적 <u>Forest Duff</u> , Topsoil					S		ö					
2.0		-										
SILTY SAND (SM), with gravel, brown-gray with mottling, medium dense, moist, (Weathered Glacial Till) Scattered roots to 3 feet	-	-										
SILTY SAND (SM), with gravel, gray, very dense, moist, (Sandy Glacial Till)	-	_										
5.5 5.5	5-											
Stratification lines are approximate. In-situ, the transition may be grac	ual.											
Ark programment Mathadi					No.4							
Advancement Method:					All test p	it locat	ions sele	cted by	Jensen	Enginee	ring, Inc.	
WATER LEVEL OBSERVATIONS					Test Pit St	arted.	7/10/2012	2	Test	Pit Com	pleted: 7/10/20)12
No groundwater seepage observed		2		DCON	Excavator:	Seton	Const.	-	Oper	rator:		
	219 Mour	05 64th ntlake 1	n Ave Ferra	. W, Suite 100 ce, Washington	Project No	o.: 8112	25065					

	TES	t Pl	TI	LC	DG NO. TP	-13					F	Page 1 of	1
PF	OJECT: Port Gamble Upland LOSS				CLIENT: Olym	pic Pro	per	ty Gr	oup,	LLC			
Sľ	Site TE:			_									
	Port Gamble, Washington												
GRAPHIC LOG	LOCATION	DEPTH (Ft.)	VATER LEVEL BSERVATIONS	AMPLE TYPE	FIELD TEST RESULTS	MPLE NUMBER	EST TYPE	MPRESSIVE TRENGTH	TRAIN (%)	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)	LIL-PL-PI	Percent Fines
21 /2° - 2			>0	Ś		SA	+	°0 CO	S	0			
	<u>SILTY SAND (SM)</u> , with trace gravel, tan-brown, loose to medium dense, moist	_	-										
	SILTY SAND (SM), with gravel, brown-gray with mottling, medium dense, moist, (Weathered Glacial Till) Scattered roots to 3.5 feet	_	-										
	4.0 SILTY SAND (SM), with gravel, gray, very dense, moist, (Sandy Glacial Till)	- 5	-										
		_	-										
		_	-										
		10											
	10.5	10-		M	7	S-1							
	Test Fit Terminaleu al 10.5 Feel												
	Stratification lines are approximate. In-situ, the transition may be gradua	al.	1	<u>I</u>				1	1		1		I
Advan	cement Method:					Notes: All test p	it locat	ions sele	cted by .	lensen l	Enginee	ring, Inc.	
nuailt	omon mon mod ou.												
	WATER LEVEL OBSERVATIONS		_	_		Test Pit St	arted:	7/10/2012	2	Test	Pit Com	pleted: 7/10/20)12
	No groundwater seepage observed No observed caving		2		JCON	Excavator:	Seton	Const.		Oper	ator:		
	-	2190 Mour	05 64th htlake T	n Ave Ferra	e. W, Suite 100 ce, Washington	Project No	0.: 8112	25065					

	TES	T P	TI	_C	OG NO. TP	-14					F	Page 1 of ^r	1
PR	OJECT: Port Gamble Upland LOSS				CLIENT: Olym	pic Pro	per	ty Gr	oup, l	LLC			
SIT	E:												
	Port Gamble, Washington												
g	LOCATION	(NS NS	ΡE	F	BER	STR	RENGTH	TEST	(%	£)	ATTERBERG LIMITS	ø
GRAPHIC LO	ДЕРТН	DEPTH (Ft.	WATER LEVI OBSERVATIO	SAMPLE TY	FIELD TEST RESULTS	SAMPLE NUM	TEST TYPE	COMPRESSIVE STRENGTH	STRAIN (%)	WATER CONTENT (9	DRY UNIT WEIGHT (po	LL-PL-PI	Percent Fines
$\frac{\overline{r_{I,IN}}}{\overline{r_{I,IN}}}$ $\frac{1}{\overline{r_{I}}}$	0.5 Forest Duff , Topsoil												
	SILTY SAND (SM), with trace gravel, tan-brown, loose to medium dense, moist	_											
	SILTY SAND (SM), with gravel, brown-gray with mottling, medium dense, moist, (Weathered Glacial Till)	_											
	Scattered roots to 3 feet	_											
				M	>	S-1							
	4.2 <u>SILTY SAND (SM)</u> , with gravel, gray, very dense, moist, (Sandy Glacial Till) 50	_											
	Stratification lines are approximate. In-situ, the transition may be gradu	al.											
Advanc	ponment Method:					Notes: All test p	it locat	ions sele	cted by J	lensen l	Enginee	ring, Inc.	
	WATER LEVEL OBSERVATIONS					Test Pit St	arted:	7/10/2012	2	Test	Pit Com	pleted: 7/10/20)12
	No groundwater seepage observed		2		DCON	Excavator:	Seton	Const.		Oper	ator:		
		219 Mou	05 64th	Ave	. W, Suite 100	Project No	· 8113	25065		<u> </u>			

	TES	ST P	IT I	_C	DG NO. TF	P-15					I	Page 1 of	1
PR	OJECT: Port Gamble Upland LOSS				CLIENT: Olyr	npic Pr	oper	ty Gr	oup,	LLC		<u> </u>	
917	Site FE:												
51	Port Gamble, Washington												
APHIC LOG	LOCATION	EPTH (Ft.)	TER LEVEL ERVATIONS	IPLE TYPE	ELD TEST ESULTS	LE NUMBER	TYPE IS	RENGTH BALLSSIVE	TEST (%) NIN	WATER NTENT (%)	RY UNIT EIGHT (pcf)	ATTERBERG LIMITS LL-PL-PI	cent Fines
GR	ОЕРТН	Ë	WA ⁻ OBSI	SAN	Ξœ	SAMF	TES.	STR	STR	² ⁰			Per
<u>711</u> 7	Forest Duff , Topsoil												
	SILTY SAND (SM), with trace gravel, tan-brown, loose to medium dense, moist	-	_										
	1.8 <u>SILTY SAND (SM)</u> , with gravel, brown-gray with mottling, medium dense, moist, (Weathered Glacial Till)		-										
	Moderate roots to 2 feet, scattered roots to 4.5 feet	-											
	4.3 SILTY SAND (SM), with gravel, gray, very dense, moist, (Sandy Glacial Till)	5 -											
		_	-										
		-	-										
		-											
		-											
	Test Pit Terminated at 10 Feet	- 10-											
	Stratification lines are approximate. In-situ, the transition may be grad	lual.											
A	none out Mathead												
Advan	cement method:					Notes: All test p	oit locat	tions sele	cted by	Jensen	Enginee	ring, Inc.	
Aband													
	WATER LEVEL OBSERVATIONS No groundwater seepage observed	16		ſ		Test Pit S	tarted:	7/10/2012	2	Test	Pit Com	pleted: 7/10/20)12
	No observed caving	219 Morr	05 64th	n Ave	e. W, Suite 100	Excavator	: Seton	Const.		Oper	rator:		
		IVIOU	пиаке	rena	ce, washington	I I UJECI NO		-0000					

TES	ST P	IT I	LC	OG NO. TP	-16					F	Page 1 of	1
PROJECT: Port Gamble Upland LOSS				CLIENT: Olym	pic Pro	oper	ty Gro	oup,	LLC			
Site SITE:												
Port Gamble, Washington												
DOCATION DI HAR BY B	DEPTH (Ft.)	WATER LEVEL BSERVATIONS	AMPLE TYPE	FIELD TEST RESULTS	MPLE NUMBER	EST TYPE	MPRESSIVE ARENGTH TRENGTH	IEST (%)	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)	Atterberg Limits	Percent Fines
DEPTH		>0	Ś		SA	+	©0 CO	S				<u> </u>
SILTY SAND (SM), with trace gravel, tan-brown, loose to medium dense, moist	-	_										
SILTY SAND (SM), with gravel, brown-gray with mottling, medium dense, moist, (Weathered Glacia Till) Moderate roots to 2 feet, scattered roots to 3 feet		_										
SILTY GRAVELLY SAND (SM), gray, very dense, moist, (Sandy Glacial Till)		_										
Stratification lines are approximate. In-situ, the transition may be gra	dual.											
Advancement Method: Abandonment Method:					Notes: All test p	it locat	ions sele	cted by .	Jensen	Enginee	ring, Inc.	
WATER LEVEL OBSERVATIONS	72				Test Pit St	arted:	7/10/2012	2	Test	Pit Com	pleted: 7/10/20)12
No groundwater seepage observed		2		acon	Excavator:	Seton	Const.		Oper	ator:		
	219 Mou	05 64t ntlake	h Ave Terra	e. W, Suite 100 ce, Washington	Project No	0.: 8112	25065					

	TES	T P		_C	DG NO. TP	-17					F	Page 1 of	1
PR	OJECT: Port Gamble Upland LOSS				CLIENT: Olym	pic Pro	oper	ty Gr	oup,	LLC			
SIT	E:			_									
	Port Gamble, Washington												
00	LOCATION	t.)	/EL	ΥΡΕ	to o	ABER	STF	RENGTH ш	TEST	(%)	ct)	ATTERBERG LIMITS	es
PHICT		•TH (F	ER LEV RVATI	LE T	D TES	E NUN	ТҮРЕ	ESSIVI VGTH	(%) N	TENT	3HT (p		ent Fin
GRA		DEF	WATE	SAMF	EE	AMPL	TEST	STRE	STRAI	CON	WEIG	LL-PL-PI	Perce
<u>71 1</u> 7	DEPTH Forest Duff, Topsoil					S		ŏ				·	
17.217	0.6 <u>SILTY SAND (SM)</u> , with trace gravel, tan-brown,												
	loose to medium dense, moist	_											
	2.1	_	-										
	SIL IY SAND (SM), with gravel, brown-gray with mottling, medium dense, moist, (Weathered Glacial												
	Moderate roots to 2 feet, scattered roots to 3 feet	-	1										
	4.1	_											
	SILTY SAND (SM), with gravel, gray, dense to very dense, moist, (Sandy Glacial Till)												
	5.3	5 -	-										
	Test Pit Terminated at 5.3 Feet												
	Stratification lines are approximate. In-situ, the transition may be gradu	al											
	essentiation into are opproximate, inforta, are admission may be gradu												
Advand	ement Method:					Notes: All test p	it locat	ions sele	cted by	lensen l	Enginee	rina. Inc.	
Abando	onment Method:												
	WATER LEVEL OBSERVATIONS					Test Dit St	arted.	7/10/2012	,	Teet	Pit Com		12
	No groundwater seepage observed		2		acon	Excavator	Seton	Const.	-	Oper	ator:		
	No observed caving	219	05 64th	n Ave	e. W, Suite 100	Project No	8112	25065					

TES	ST P		LC	DG NO. TP	-18					1	Page 1 of	1
PROJECT: Port Gamble Upland LOSS				CLIENT: Olym	npic Pro	oper	ty Gro	oup,	LLC		Ŭ	
Site SITE:			_									
Port Gamble, Washington												
SOLOCATION	JEPTH (Ft.)	ATER LEVEL SERVATIONS	MPLE TYPE	IELD TEST RESULTS	IPLE NUMBER	ST TYPE	PRESSIVE RENGTH RENGTH	TEST (%) NIVE	WATER DNTENT (%)	DRY UNIT EIGHT (pcf)	Atterberg Limits LL-PL-PI	ercent Fines
о рертн		<u>≷</u> 8	SA	Ľ	SAN	Ë	COM	STI	ŏ	\$		ă
<u>Forest Duff</u> , Topsoil	_											
SIL IY SAND (SM), with trace gravel, tan-brown, loose, moist	-											
SILTY SAND (SM), with gravel, brown-gray with mottling, medium dense, moist, (Weathered Glacia Till)												
SILTY GRAVELLY SAND (SM), gray, very dense, moist, (Very Hard Glacial Till) Moderate roots to 2 feet, scattered roots to 3 feet												
Stratification lines are approximate. In-situ, the transition may be gra	dual.											
Advancement Method:					Notes:							
Abandonment Method:					All test p	bit locat	ions sele	cted by	Jensen	Enginee	ring, Inc.	
WATER LEVEL OBSERVATIONS									 _	D '' C		
No groundwater seepage observed		זכ		aron	Test Pit S	tarted:	//10/2012	2	Test	Pit Com	pleted: 7/10/20)12
No observed caving	219 Mour	05 64th htlake T	n Ave Ferra	e. W, Suite 100 ce, Washington	Project No	.: 8112	25065		Oper	au.		

	TEST PIT LOG NO. TP-19 Page 1 of 1												
PR	OJECT: Port Gamble Upland LOSS				CLIENT: Olym	pic Pro	oper	ty Gr	oup, l	LLC		- 0	
еіт	Site												
311	E. Port Gamble, Washington												
ő	LOCATION		NS II	Ш	L	BER	STF	RENGTH	TEST	(%	÷	ATTERBERG LIMITS	
GRAPHIC LO		DEPTH (Ft.	WATER LEVI OBSERVATIO	SAMPLE TY	FIELD TES'	SAMPLE NUME	TEST TYPE	OMPRESSIVE STRENGTH	STRAIN (%)	WATER CONTENT (9	DRY UNIT WEIGHT (po	LL-PL-PI	Percent Fines
<u>71 1^X 7/</u>	<u>Forest Duff</u> , Topsoil			000		0)		0					
	SILTY SAND (SM), with trace gravel, tan-brown, loose to medium dense, moist	_			2	S-1							
	SILTY SAND (SM), with gravel, brown-gray with mottling, medium dense, moist, (Weathered Glacial Till)	_											
	Moderate roots to 2 feet, scattered roots to 3.5 feet	_											
	SILTY SAND (SM), with gravel, gray, dense, moist, (Sandy Glacial Till)	_											
	Test Pit Terminated at 5 Feet	al.											
Advanc	ponment Method:					Notes: All test p	it locat	tions sele	cted by J	ensen I	Enginee	ring, Inc.	
	WATER LEVEL OBSERVATIONS					Test Pit S	tarted:	7/10/2012	2	Test	Pit Com	pleted: 7/10/20	12
	No observed caving		2			Excavator	Seton	Const.		Oper	ator:		
	-	219 Mour	U5 64th htlake ⊺	1 Ave	e. vv, Suite 100	Project No	· 8112	25065		T			

THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT. TERRACON SMART LOG-NO WELL 81125066, TEST PIT LOGS, 7-17-12.GPJ ODOT TEST.GPJ 10/24/12

	TES	ST P	IT I	LC	DG NO. TF	P-20					I	Page 1 of	1
PR	OJECT: Port Gamble Upland LOSS				CLIENT: Olyr	npic Pro	oper	ty Gr	oup,	LLC		-	
SIT	Site												
0	Port Gamble, Washington										i	1	
GRAPHIC LOG	LOCATION	DEPTH (Ft.)	MATER LEVEL BSERVATIONS	AMPLE TYPE	FIELD TEST RESULTS	AMPLE NUMBER	EST TYPE	MPRESSIVE STRENGTH	STRAIN (%)	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)	ATTERBERG LIMITS LL-PL-PI	Percent Fines
	DEPTH Forest Duff Topsoil		-0	S		S₽	-	8″	0				
	0.5 SILTY SAND (SM), with trace gravel, tan-brown, loose, moist	_	-										
	SAND (SM), with silt, trace gravel, brown-gray with mottling, medium dense, moist, (Weathered Glacial Till) Moderate roots to 2 feet, scattered roots to 3.5 feet	-	-										
	5.0 SAND (SM), with silt and gravel, gray, dense,	- 5-	_										
		-	-										
	9.5			M	2	S-1				11			6
	Test Pit Terminated at 9.5 Feet												
	Stratification lines are approximate. In-situ, the transition may be gra	dual.											
Advano Aband	cement Method:					Notes: All test p	bit locat	ions sele	cted by	Jensen	Enginee	ring, Inc.	
	WATER LEVEL OBSERVATIONS					Test Pit S	tarted:	7/10/2012	2	Test	Pit Com	pleted: 7/10/20)12
	No groundwater seepage observed		2		acon	Excavator	: Seton	Const.		Oper	rator:		
		219 Mou	05 64th ntlake	n Ave Terra	e. W, Suite 100 ce, Washington	Project No	o.: 8112	25065					

TE	ST P	ITI	LC	DG NO. TP	-21					I	Page 1 of	1
PROJECT: Port Gamble Upland LOSS				CLIENT: Olym	npic Pro	oper	ty Gr	oup,	LLC			
SITE:												
		. v			Ř	STE	RENGTH	TEST			ATTERBERG	
	DEPTH (Ft.)	WATER LEVEL	SAMPLE TYPE	FIELD TEST RESULTS	AMPLE NUMBE	TEST TYPE	OMPRESSIVE STRENGTH	STRAIN (%)	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)	LIMITS	Percent Fines
DEPTH State Forest Duff, Topsoil		1.0	0,		Ś		8					
<u>SILTY SAND (SM)</u> , with trace gravel, tan-brown, loose, moist		-										
SILTY SAND (SM), with gravel, brown-gray with mottling, medium dense, moist, (Weathered Glaci Till)	al		en s	2	S-1							
Moderate roots to 2 feet, scattered roots to 3 feet												
SILTY SAND (SM), with gravel, gray, dense, moist, (Sandy Glacial Till)												
Stratification lines are approximate. In-situ, the transition may be g	radual.											
dvancement Method:					Notes:	it less!	iono!-	atod by	longer	Engine	ring loc	
bandonment Method:					All test p	nt Iocat	aons sele	cted by	Jensen	∟nginee	nng, inc.	
WATER LEVEL OBSERVATIONS	75				Test Pit Si	tarted:	7/11/2012	2	Test	Pit Com	pleted: 7/11/20	
No groundwater seepage observed No observed caving		2		acon	Excavator	Seton	Const.		Oper	rator:		
	219 Mou	05 64th ntlake	n Ave Terra	e. W, Suite 100 ce, Washington	Project No	o.: 8112	25065					

	TES		Т	LC	DG NO. TI	P-22					I	Page 1 of	1
PR	ROJECT: Port Gamble Upland LOSS				CLIENT: Oly	mpic Pr	oper	ty Gr	oup,	LLC		<u> </u>	
517	Site TE:												
51	Port Gamble, Washington												
SRAPHIC LOG	LOCATION	DEPTH (Ft.)	ATER LEVEL SERVATIONS	MPLE TYPE	FIELD TEST RESULTS	APLE NUMBER	IST TYPE	APRESSIVE RENGTH	LEST (%) NIV	WATER ONTENT (%)	DRY UNIT VEIGHT (pcf)	Atterberg Limits	ercent Fines
	DEPTH		≥ö	Ś		SAN	Ë	Sov	LS	0	>		<u> </u>
	<u>Forest Duff</u> , Topsoil <u>SILTY SAND (SM)</u> , with trace gravel, tan-brown, loose to medium dense, moist	-											
	1.8 SILTY SAND (SM), with gravel, brown-gray with mottling, medium dense, moist, (Weathered Glacial Till) Moderate roots to 2 feet, scattered roots to 6 feet	-	-										
	4.2 SILTY SAND (SM), with gravel, gray, dense, moist, (Sandy Glacial Till)	5 -	-										
		_											
		_	-										
		-		m	2	S-1							
	10.0 Test Pit Terminated at 10 Feet	- 10-											
	Stratification lines are approximate. In-situ, the transition may be grad	ual.											
Advor	compart Mathod:					Natas							
Auvan	Ionment Method:					All test p	oit locat	tions sele	cted by	Jensen	Enginee	ring, Inc.	
	WATER LEVEL OBSERVATIONS	16		-		Test Pit S	tarted:	7/11/2012	2	Test	Pit Com	pleted: 7/11/20)12
	No observed caving	210	05 64#			Excavator	: Seton	Const.		Oper	rator:		
		Mou	ntlake	Terra	ce, Washington	Project No	o.: 8112	25065					

	TEST PIT LOG NO. TP-23 Page 1 of 1												
PRO	JECT: Port Gamble Upland LOSS				CLIENT: Olym	pic Pro	oper	ty Gro	oup, l	LLC			
SITE													
	Port Gamble, Washington												
ပ္ပ L(OCATION		SNS SNS	ΡE		IBER	STF	RENGTH	TEST	(%	નું .	ATTERBERG LIMITS	s
GRAPHIC L	ЕРТН	DEPTH (Ft	WATER LEV OBSERVATIO	SAMPLE TY	FIELD TES RESULTS	SAMPLE NUM	TEST TYPE	COMPRESSIVE STRENGTH	STRAIN (%)	WATER CONTENT (DRY UNIT WEIGHT (p	LL-PL-PI	Percent Fine
	5 Forest Duff, Topsoil												
2.(SILTY SAND (SM), with trace gravel, tan-brown, loose, moist	-	_										
	<u>SILTY SAND (SM)</u> , with gravel, brown-gray with mottling, medium dense, moist, (Weathered Glacial Till) Moderate roots to 2 feet, scattered roots to 3 feet	_		SUN	2	S-1							
3.8	8 <u>SILTY SAND (SM)</u> , with gravel, gray, dense,	_				01							
4.8	moist, (Sandy Glacial Till) 8												
	Test Pit Terminated at 4.8 Feet												
Ś	Stratification lines are approximate. In-situ, the transition may be gradua	al.											<u> </u>
Advancen	nent Method:					Notes: All test p	it locat	ions sele	cted by J	ensen I	Enginee	ring, Inc.	
Abandonn	nent Method:												
	WATER LEVEL OBSERVATIONS			_		Test Pit St	arted:	7/11/2012	2	Test	Pit Com	pleted: 7/11/20	112
/	No groundwater seepage observed No observed caving		2		JCON	Excavator:	Seton	Const.		Oper	ator:		
·		219	05 64th	n Ave	e. W, Suite 100	Project No	· 8112	25065					

	TES	T P	Т	_C	DG NO. TP	-24					F	Page 1 of	1
	PROJECT: Port Gamble Upland LOSS				CLIENT: Olym	pic Pro	per	ty Gro	oup,	LLC			
	Site			_									
	Port Gamble, Washington												
		Ft.)	EVEL	ГҮРЕ	TS TS	JMBER	STF	RENGTH	TEST	R (%)	lT (pcf)	LIMITS	nes
		EPTH (TER LI	. JPLE	ELD TE		т түре	RESSI ENGTH	AIN (%	WATE		LL-PL-PI	rcent Fi
	Б		WA OBS	SAN		SAMF	TES	COMP	STR	S	ME		Pe
	<u>Forest Duff</u> , Topsoil												
	SILTY SAND (SM), with trace gravel, tan-brown, loose to medium dense, moist	_	-										
10/24/12	SILTY SAND (SM), with gravel, brown-gray with mottling, medium dense, moist, (Weathered Glacial Till)		-										
ST.GPJ	Moderate roots to 2 feet, scattered roots to 3 feet												
JOT TE	4.0 SILTY SAND (SM), with gravel, gray, dense to very dense moist (Glacial Till)	-		en e		C 1							
PJ OI	Test Pit Terminated at 4.8 Feet	-		Ŭ	2	S-1							<u> </u>
LOGS, 7-17-12.													
35, TEST PIT I													
ELL 8112506													
T LOG-NO W													
ACON SMAR													
ORT. TERF													
RIGINAL REP													
ED FROM OF													
PARAT	Stratification lines are approximate. In-situ, the transition may be grade	ual.											
VALID IF SE	Advancement Method:					Notes: All test p	it locat	ions sele	cted by	Jensen I	Enginee	ring, Inc.	
TON SI DC	Abandonment Method:												
SING LC	WATER LEVEL OBSERVATIONS	16				Test Pit St	arted:	7/11/2012	2	Test	Pit Com	pleted: 7/11/20)12
IS BOR	No observed caving	219	05 64th	Ave	BUUN W, Suite 100	Excavator:	Seton	Const.		Oper	ator:		
Ē		WATER LEVEL OBSERVATIONS Io groundwater seepage observed Io observed caving											

	TEST PIT LOG NO. TP-25 Page 1 of 1 OJECT: Port Gamble Upland LOSS CLIENT: Olympic Property Group LLC													
PR	OJECT: Port Gamble Upland LOSS				CLIENT: Olym	pic Pro	oper	ty Gr	oup, l	LLC				
917	Site													
	Port Gamble, Washington													
Ö	LOCATION		NS NS	ЪЕ	H .	BER	STF	RENGTH	TEST	(%	c).	ATTERBERG LIMITS	ý	
HICL		LH (Ft	R LEV	<u>≻</u> ⊔	0 TES	MUN	ΥPE	SSIVE	(%)	TER ENT (HT (pe		t Fine	
GRAP		DEP.	VATE	AMPI	FIELC	MPLE	ESTT	MPRE	TRAIN	CONT	DRY WEIG	LL-PL-PI	Percer	
<u>7</u> . 7. 7.	DEPTH Forest Duff Topsoil		-0	S		SA	-	So	S S					
	0.5 <u>SILTY SAND (SM)</u> , with trace gravel, tan-brown,													
	loose to medium dense, moist	-												
	1.8 SILTY SAND (SM) with gravel brown-grav with	_												
	mottling, medium dense, moist, (Weathered Glacial													
		_												
	Scallered fools to 3 feet													
	4.0 SILTY SAND (SM), with gravel, gray, very dense,	-												
	moist, (Very Dense Glacial Till)	_												
	5.2 Test Pit Terminated at 5.2 Feet	5-												
	Stratification lines are approximate. In-situ, the transition may be gradu	al.	1	l	<u>. </u>			1	. 1					
Advan	cement Method:					Notes:								
						All test p	it locat	ions sele	cted by J	ensen l	Enginee	ring, Inc.		
Aband	onment Method													
	WATER LEVEL OBSERVATIONS					Test Pit St	arted:	7/11/2012	2	Test	Pit Com	pleted: 7/11/20)12	
	No groundwater seepage observed		2		JCON	Excavator:	Seton	Const.		Oper	ator:			
		219	05 64th	Ave	. W, Suite 100	Project No		25065						

	TES	T P	TI	LC	G NO. TP	-26					F	Page 1 of	1
PF	OJECT: Port Gamble Upland LOSS				CLIENT: Olym	npic Pro	oper	ty Gr	oup,	LLC		<u> </u>	
91	Site TE:												
5	Port Gamble, Washington												
IC LOG	LOCATION	H (Ft.)	LEVEL ATIONS	: TYPE	LEST	NUMBER	STF		TEST	ER NT (%)	JNIT T (pcf)	Atterberg Limits	Fines
GRAPH	DEDT1	DEPTH	WATER OBSERV	SAMPLE	FIELD	SAMPLE N	TEST TYI	STRENG:	STRAIN (WAT CONTEI	DRY (WEIGH	LL-PL-PI	Percent
<u>74 1</u> 2 - 7	DE Forest Duff, Topsoil			-000		••		0					
	SILTY SAND (SM), with trace gravel, tan-brown, loose to medium dense, moist	-	-		2	S-1							
	2.2 SILTY SAND (SM), with gravel, brown-gray with mottling, medium dense, moist, (Weathered Glacial Till) Moderate roots to 2 feet, scattered roots to 3 feet	-	-										
	3.8 SAND (SM), with silt, gravel, gray, very dense, moist, (Sandy Glacial Till)		_										
		5 -											
	Gravelly zone from 6-7 feet	-	-										
		_											
		_											
		10-		an	>	S-2							
	11.0												
	Test Pit Terminated at 11 Feet												
	Stratification lines are approximate. In-situ, the transition may be gradu	ıal.	I	1	I		I		1		1		1
Advan	cement Method:					Notes:							
						All test p	it locat	ions sele	cted by	Jensen	Enginee	ring, Inc.	
Abanc	Ionment Method:												
	WATER LEVEL OBSERVATIONS					Test Pit Si	tarted:	7/11/2012	2	Test	Pit Com	pleted: 7/11/20)12
	No groundwater seepage observed		2		acon	Excavator	Seton	Const.		Oper	ator:		
	ivo ubserveu caving	219 Mour	05 64th htlake	n Ave Terra	. W, Suite 100 ce, Washington	Project No	o.: 8112	25065		+			

	TEST PIT LOG NO. TP-27 Page 1 of 1 IECT: Port Gamble Upland LOSS CLIENT: Olympic Property Group, LLC													
PR	OJECT: Port Gamble Upland LOSS				CLIENT: Olym	pic Pro	oper	ty Gr	oup,	LLC		<u></u>	<u>.</u>	
епт	Site													
511	Port Gamble, Washington													
Ю О	LOCATION		EL	ЦЦ	⊢	BER	ST	RENGTH	TEST	(%	ct)	ATTERBERG LIMITS	s	
GRAPHIC L	neptu	DEPTH (Ft.	WATER LEVI OBSERVATIC	SAMPLE TY	FIELD TES' RESULTS	SAMPLE NUM	TEST TYPE	COMPRESSIVE STRENGTH	STRAIN (%)	WATER CONTENT (9	DRY UNIT WEIGHT (pc	LL-PL-PI	Percent Fine	
7 <u>11</u> 7	Forest Duff, Topsoil					•								
	SILTY SAND (SM), with trace gravel, tan-brown, loose, moist		-											
	SILTY SAND (SM), with trace gravel, brown-gray with mottling, medium dense, moist, (Weathered Glacial Till)	· _	-											
	Moderate roots to 2 feet, scattered roots to 3 feet	-												
	SILTY SAND (SM), with gravel, gray, dense, moist, (Sandy Glacial Till)	-	-											
	Test Pit Terminated at 5 Feet													
		laadan												
Advanc Abando	ponment Method:					Notes: All test p	it locat	ions sele	cted by J	lensen I	Enginee	ring, Inc.		
	WATER LEVEL OBSERVATIONS			-		Test Pit Si	arted:	7/11/2012	2	Test	Pit Com	pleted: 7/11/20)12	
	No observed caving		2			Excavator	Seton	Const.		Oper	ator:			
		219 Mour	05 64th	1 Ave	e. W, Suite 100	Project No	· 8112	25065						

THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT. TERRACON SMART LOG-NO WELL 81125066, TEST PIT LOGS, 7-17-12.GPJ ODOT TEST.GPJ 10/24/12

	TES	ST P	IT I	LC	DG NO. TP	-28					l	Page 1 of	1
PR	OJECT: Port Gamble Upland LOSS				CLIENT: Olyn	npic Pro	oper	ty Gr	oup,	LLC		-	
SI	Site IF·												
0.1	Port Gamble, Washington	-											
APHIC LOG	LOCATION	EPTH (Ft.)	TER LEVEL ERVATIONS	IPLE TYPE	ELD TEST tesults	'LE NUMBER	т түре	RENGTH BALLSING	TEST (%) NIN	WATER NTENT (%)	RY UNIT EIGHT (pcf)	ATTERBERG LIMITS	cent Fines
GR	DEPTH	l ä	WA ⁻ OBSI	SAN	Ξœ	SAMF	TES'	COMP	STR	0			Per
<u>71 %</u> 7	0.5 Forest Duff , Topsoil												
	SILTY SAND (SM), with trace gravel, tan-brown, loose to medium dense, moist	-	-										
	SILTY SAND (SM), with gravel, brown-gray with mottling, medium dense, moist, (Weathered Glacial Till) Moderate roots to 2 feet, scattered roots to 3 feet		_										
	40												
	SAND (SM), with silt, gravel, gray, dense to very dense, moist, (Sandy Glacial Till)	5-											
		_	_										
		-	_										
		-	_	en e	2	S-1							
	10.0					01							
	Test Pit Terminated at 10 Feet	- 10-											
	Stratification lines are approximate. In-situ, the transition may be grad	lual.	1	1	1		I	1	1	1	1	1	1
Advan	cement Method:					Notee [.]							
						All test p	oit loca	tions sele	cted by	Jensen	Enginee	ering, Inc.	
Aband													
	WATER LEVEL OBSERVATIONS	16		-		Test Pit Si	tarted:	7/11/2012	2	Test	Pit Com	pleted: 7/11/20	012
	No observed caving	210	05 64#			Excavator	: Setor	Const.		Oper	rator:		
		Z 19 Moui	ntlake	Terra	ce, Washington	Project No	o.: 8112	25065					

T	EST P		_C	DG NO. TP	-29					[Page 1 of	1
PROJECT: Port Gamble Upland LOSS				CLIENT: Olym	npic Pro	oper	ty Gr	oup,	LLC			
SITE:												
		<u>،</u> م	ш	1	Ř	STE	RENGTH	TEST			ATTERBERG	
	DEPTH (Ft.)	WATER LEVEL DBSERVATION	SAMPLE TYPI	FIELD TEST RESULTS	AMPLE NUMBE	TEST TYPE	STRENGTH	STRAIN (%)	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)	LIMITS	Percent Fines
DEPTH			•,		S		ŏ					
SILTY SAND (SM), with trace gravel, tan-brown loose, moist	, _	_	-000									
2.0	-	-	U	>	S-1							
with mottling, medium dense, moist, (Weathered Glacial Till) Moderate roots to 2 feet, scattered roots to 3.5 f	eet	_										
4.0 SILTY SAND (SM), with gravel, gray, dense to very dense, moist, (Sandy Glacial Till)		_										
Stratification lines are approximate. In-situ, the transition may be	gradual.											
vdvancement Method:					Notes: All test p	it locat	ions sele	cted by v	Jensen	Enginee	ring, Inc.	
Abandonment Method:												
WATER LEVEL OBSERVATIONS	٦٢				Test Pit Si	tarted:	7/11/2012	2	Test	Pit Com	pleted: 7/11/20)12
No observed caving		2	ſ		Excavator	Seton	Const.		Oper	rator:		
	219 Mou	05 64th ntlake T	Ave errad	. W, Suite 100 ce, Washington	Project No	o.: 8112	25065					

	TEST PIT LOG NO. TP-30 Page 1 of 1												
PR	OJECT: Port Gamble Upland LOSS				CLIENT: Olym	npic Pro	oper	ty Gro	oup,	LLC			
SIT	E:			_									
	Port Gamble, Washington				i i								
GRAPHIC LOG	LOCATION	DEPTH (Ft.)	WATER LEVEL DBSERVATIONS	SAMPLE TYPE	FIELD TEST RESULTS	AMPLE NUMBER	TEST TYPE	MPRESSIVE STRENGTH	STRAIN (%)	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)	LIMITS	Percent Fines
<u></u>	DEPTH Forest Duff. Topsoil		10	0,		Ś		8	•,				
	 <u>SILTY SAND (SM)</u>, with trace gravel, tan-brown, loose to medium dense, moist 	_											
	SILTY SAND (SM), with gravel, brown-gray with mottling, medium dense, moist, (Weathered Glacial Till) Moderate roots to 2 feet, scattered roots to 3 feet	-											
	4.0	_											
	SILTY SAND (SM), with gravel, gray, very dense, moist, (Very Dense Glacial Till)	5 -	_										
		_		M	2	S-1							
	7.0 Test Pit Terminated at 7 Feet	_											
	Stratification lines are approximate. In-situ, the transition may be gradu	al.											
Advanc Abando	ponment Method:					Notes: All test p	it locat	ions sele	cted by J	lensen l	Enginee	ring, Inc.	
	WATER LEVEL OBSERVATIONS					Test Pit St	arted:	7/11/2012	2	Test	Pit Com	pleted: 7/11/20)12
	No groundwater seepage observed		2		JCON	Excavator	Seton	Const.		Oper	ator:		
		219 Mour	05 64th htlake	n Ave Terra	. W, Suite 100 ce, Washington	Project No	o.: 8112	25065					

TE	ST P	IT I	LC	OG NO. TP	-31					I	Page 1 of	1	
PROJECT: Port Gamble Upland LOSS		CLIENT: Olympic Property Group, LLC											
SITE:													
Port Gamble, Washington				i					1		ATTERREDO		
DOT DIHUERS LOCATION	DEPTH (Ft.)	WATER LEVEL	SAMPLE TYPE	FIELD TEST RESULTS	AMPLE NUMBER	TEST TYPE	OMPRESSIVE STRENGTH	STRAIN (%)	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)	LIMITS	Percent Fines	
DEPTH Forest Duff, Topsoil			0,		Ś		8.					-	
2.0 5 5 5 5 5 5 5 5 5 5 5 5 5	-	_											
SILTY SAND (SM), with gravel, brown-gray with mottling, medium dense, moist, (Weathered Glacia Till)	al _		-000										
ividerate roots to 2 feet, scattered roots to 3 feet				2	S-1				8			9	
A.0 SILTY SAND (SM), with gravel, gray, dense, moist, (Sandy Glacial Till) 4.8													
Stratification lines are approximate. In-situ, the transition may be gr	adual.												
Advancement Method:					Notes:								
Abandonment Method:					All test p	oit locat	tions sele	cted by	Jensen	Enginee	ring, Inc.		
WATER LEVEL OBSERVATIONS					Teet Dit O	tarted.	7/11/2011		Toot	Pit Com	nleted: 7/11/00	 112	
No groundwater seepage observed		2	ſ	acon	Test Pit Started: 7/11/2012					Test Pit Completed: 7/11/2012			
No observed caving	219 Mou	05 64th ntlake	h Ave Terra	e. W, Suite 100 ce, Washington	Project No.: 81125065								

TEST PIT LOG NO. TP-32 Page 1 of 1																
PR	OJECT: Port Gamble Upland LOSS				CLIENT: Olym	pic Pro	per	ty Gro	oup, l	LLC						
SIT				_												
	Port Gamble, Washington															
g	LOCATION	_	NS II	Ш	L	BER	STF	RENGTH	TEST	(%	Ĵ.	ATTERBERG LIMITS				
GRAPHIC LO	ПЕРТН	DEPTH (Ft.	WATER LEVI OBSERVATIO	SAMPLE TY	FIELD TEST RESULTS	SAMPLE NUMF	TEST TYPE	COMPRESSIVE STRENGTH	STRAIN (%)	WATER CONTENT (9	DRY UNIT WEIGHT (pc	LL-PL-PI	Percent Fines			
$\overline{r_{I,V}}$ $\overline{r_{I}}$	Forest Duff, Topsoil							0								
	SILTY SAND (SM), with trace gravel, tan-brown, loose to medium dense, moist	-	-													
	SILTY SAND (SM), with gravel, brown-gray with mottling, medium dense, moist, (Weathered Glacial Till) Moderate roots to 2 feet, scattered roots to 3.5 feet	_	_													
	 <u>SILTY SAND (SM)</u>, with gravel, gray, dense, moist, (Sandy Glacial Till) 	 5	- 5	-												
	Test Pit Terminated at 5.5 Feet	al.														
Advand	onment Method:					Notes: All test p	it locat	ions selec	cted by J	ensen I	Enginee	ring, Inc.				
	WATER LEVEL OBSERVATIONS			_		Test Pit St	arted:	7/11/2012	!	Test	Pit Com	pleted: 7/11/20	112			
	No observed caving		2		JCON	Excavator:	Seton	Const.		Oper	ator:					
			05 64th		. W, Suite 100	Project No : 81125065										

TEST PIT LOG NO. TP-33 Page 1 of 1													
PR	OJECT: Port Gamble Upland LOSS	CLIENT: Olym	mpic Property Group, LLC										
SIT	E:												
	Port Gamble, Washington		-										
go	LOCATION	t)	VEL	ΥPE	r s	ABER	STF	RENGTH ⁻	TEST	(%)	r d	ATTERBERG LIMITS	es
GRAPHIC I	DEDTH	DEPTH (F	WATER LEV OBSERVATI	SAMPLE T	FIELD TES	SAMPLE NUN	TEST TYPE	OMPRESSIVI STRENGTH	STRAIN (%)	WATER CONTENT	DRY UNI WEIGHT (p	LL-PL-PI	Percent Fine
7 <u>71</u> 7 7 <u>7</u> 7	Forest Duff, Topsoil							0					
	SILTY SAND (SM), with trace gravel, tan-brown, loose to medium dense, moist	_	_										
	2.0	_		M	2	S-1							
	SILTY SAND (SM), with gravel, brown-gray with mottling, medium dense, moist, (Weathered Glacial Till)	-											
	Woderate roots to 2 feet, scattered roots to 3 feet			m	2	S-2							
	SILTY SAND (SM), with gravel, gray, dense, moist, (Sandy Glacial Till)	_											
	Test Pit Terminated at 4.8 Feet												
	Stratification lines are approximate. In-situ, the transition may be graduated	al.											
Advanc	ement Method:					Notes:					Fasiass		
						Air test p	iii iocai		sted by 5	enserri	LIGINEE	nng, nic.	
Abando	onment Method:												
	WATER LEVEL OBSERVATIONS					Test Pit St	arted:	7/11/2012		Test	Pit Com	pleted: 7/11/20)12
	No groundwater seepage observed		26		JCON	Excavator:	Seton	Const.		Oper	ator:		
		219 Mou	05 64th	h Ave	. W, Suite 100	Project No	· 8113	25065					

	TE	ST P	IT I	LC	DG NO. TP	P-34					I	Page 1 of	1
PR	OJECT: Port Gamble Upland LOSS				CLIENT: Olyn	npic Pro	oper	ty Gr	oup,	LLC		<u> </u>	
	Site			_									
	Port Gamble, Washington												
RAPHIC LOG	LOCATION	DEPTH (Ft.)	ATER LEVEL SERVATIONS	MPLE TYPE	FIELD TEST RESULTS	APLE NUMBER	ST TYPE	RENGTH RENGTH RENGTH	LEST (%)	WATER ONTENT (%)	DRY UNIT VEIGHT (pcf)	Atterberg Limits LL-PL-PI	ercent Fines
0	DEPTH		ЗB	SA	<u> </u>	SAN	Ë	COM	ST	0	>		
<u>×' '</u> ×	5.5 <u>Forest Duff</u> , Topsoil												
	SILTY SAND (SM), with trace gravel, tan-brown, loose to medium dense, moist	-											
	1.8 <u>SILTY SAND (SM)</u> , with gravel, brown-gray with mottling, medium dense, moist, (Weathered Glaci Till)	al	_										
	Moderate roots to 2 feet, scattered roots to 4 feet	-											
	SAND (SM), with silt, gravel, gray, dense, moist, (Sandy Glacial Till)	-	-	en l	2	S-1							
		5 -											
		-											
		-											
		-											
	9.5 Toot Did Torreinodod of 0.5 Food			an	2	S-2							
	rest Pit Terminated at 9.5 Feet												
	Stratification lines are approximate. In-situ, the transition may be gr	radual.	<u> </u>	1	1		<u> </u>	I	1	1	I	I	1
Advand	cement Method:					Notes: All test p	bit locat	tions sele	cted by	Jensen	Enginee	ring, Inc.	
Abande	onment Method:												
	WATER LEVEL OBSERVATIONS					Toot Dit O	tartod	7/11/2040	2	Toot		nlotod: 7/11/00	112
	No groundwater seepage observed		2		acon	Excavator	: Seton	Const	<u>-</u>	One	rator:	pieleu. //11/2l	<i>.</i>
	No observed caving	219 Mou	05 64ti ntlake	h Ave Terra	e. W, Suite 100 ce, Washington	Project No	D.: 8112	25065					

GRAIN SIZE DISTRIBUTION

ASTM D422 U.S. SIEVE OPENING IN INCHES HYDROMETER U.S. SIEVE NUMBERS ² 1.5 ¹ 3/4 ^{1/2} 3/8 3 6 $8^{10}_{-14}14^{16}_{-20}30_{-40}50_{-60}100_{-140}200$ 4 6 3 100 F-1 -95 :/ 90 85 80 75 70 : 65 : PERCENT FINER BY WEIGH 60 55 . . 50 45 40 : 35 30 25 •••• 20 : 15 10 : 5 : 0 100 10 0.1 0.01 0.001 1 **GRAIN SIZE IN MILLIMETERS** GRAVEL SAND COBBLES SILT OR CLAY fine medium fine coarse coarse **USCS Classification** LL PL ΡΙ Cu **Specimen Identification** Cc TP-20 9.0 1.22 3.04 D100 D30 D10 %Gravel %Sand %Silt %Clay **Specimen Identification** D60 TP-20 9.5 0.271 0.172 0.089 0.2 93.5 6.3 9.0 PROJECT NUMBER: 81125065 PROJECT: Port Gamble Upland erra SITE: Port Gamble Millsite CLIENT: Olympic Properety Group, LLC 21905 64th Ave. W., Suite 100 Port Gamble, Washington Mountlake Terrace, Washington

GRAIN SIZE DISTRIBUTION

GRAIN SIZE DISTRIBUTION

TFRR. GP.1 7-17-12 C F TEST

APPENDIX C NITRATE SCREENING BALANCE

- Department of Health (DOH). 2013a. Site Approval letter to Jon Rose dated May 24, 2013 (Project Number 2012-035).
- DOH. 2014. Port Gamble Hydrogeology Report. Letter from Nancy Darling to Jon Rose of Olympic Property Group January 28, 2014.
- DOH. 2013b. Publication #337-069 (Revised October 2013) Level 1 Nitrate Balance Instructions for Large On-site Sewage Systems.

STATE OF WASHINGTON DEPARTMENT OF HEALTH OFFICE OF SHELLFISH AND WATER PROTECTION PO Box 47824 • Olympia, Washington 98504-7824 (360) 236-3330 • TDD Relay Service: 1-800-833-6388

May 24, 2013

John Rose, President Pope Resources 14245 Tenth Avenue NE Poulsbo, Washington 98370

Subject: Proposed Port Gamble Large On-site Sewage System (LOSS), Project Number 2012-035, Site Approval, Kitsap County

Dear Mr. Rose,

We have reviewed the winter water table study submitted by your engineer. We've determined that the soil and site information, including the study data, is consistent with the conceptual treatment design.

You are approved to proceed to the next step: submit a hydrogeology report to address the fate and transport of the effluent in the drainfield area.

Prior to commencing work on that submittal, your engineer or hydrogeologist should contact Nancy Darling at 360-236-3040 or nancy.darling@doh.wa.gov to discuss the scope of the study.

Your system's required treatment level will be determine after the review of the hydrogeology report.

Here are the drainfield design parameters, based on our review:

- The hydraulic loading rate to the drainfield shall be no greater than 0.6 gallons per day per square foot.
- Soil depth in the proposed drainfield area is between 45 and 60 inches of Soil Types 3 and 4.
- The drainfield shall not be installed in areas of over 30% slope and areas surrounding soil logs 6, 16, 18, and 22.
- Dripfields must be designed in accordance with WAC 246-272B-06650 Table 7: Maximum Daily Emitter Discharge Rates.

If you have any questions please contact Kay Rottell at 360-236-3318 or katherine.rottell@doh.wa.gov.

Sincerely,

Vense Lalin

Denise Lahmann, P.E. LOSS Engineering Supervisor

cc: David Jensen, P.E. Jensen Engineering Kathy Taylor, Department of Ecology John Felder, P.E. Department of Natural Resources Bill Whitely, P.E., Kitsap PUD Kay Rottell, E.I.T., DOH Kitsap County Health District

STATE OF WASHINGTON DEPARTMENT OF HEALTH

OFFICE of SHELLFISH and WATER PROTECTION

243 Israel Road SE • PO Box 47824 • Olympia, Washington 98504-7824 (360) 236-3330 • TDD Relay Services 1-800-833-6388

January 28, 2014

Jon Rose Olympia Property Group 19950 7th Ave NE Suite 200 Poulsbo, WA 98370

Dear Mr. Rose,

Subject: Port Gamble - Hydrogeology Report

Thank you for submitting the hydrogeology report for the proposed Port Gamble Large On-Site System (LOSS) dated January 10, 2013. In general, the report and its findings are acceptable. Golder Associates did an excellent job of characterizing the hydrogeological parameters required for the nitrate balance.

Several parameters in the nitrate balance need additional supporting data. Please provide the following:

- 1. A discussion on how the primary drainfield area was determined. It seems large for a 100,000 gpd system in sandy soils.
- 2. The supporting calculations for the groundwater gradient.
- 3. Influent samples to support a concentration less than 60 mg/L.
- 4. I recommend you also take a second look at the recharge rate (seemed low) and the aquifer thickness (you can use an average annual thickness).

The Department of Health's (DOH) goal is to keep nitrate increases at the property boundary to less than 2.0 mg/L. The characteristics of the aquifer under your site make that difficult to achieve. For your LOSS, DOH will set the maximum increase of nitrate at the property boundary at 5.0 mg/L.

The hydrogeology report discussed the use of wetlands for treatment. We cannot approve the use of wetlands as part of the nitrogen treatment because the report did <u>not</u> show the following:

- 1. All the effluent will flow east into the wetlands.
- 2. The wetlands can reduce the nitrogen in the effluent to 5 mg/L or less.
- 3. The streams would not have a measureable nitrate impact greater than 10 mg/L.
Jon Rose January 28, 2014 Page 2

In my professional opinion, it will be difficult (and costly) to show all effluent flows to the east. Please note that even if the above information was provided, DOH would only allow the natural wetlands to provide a part, not all, of the denitrification treatment.

Also, please provide a discussion with supporting data showing that the 100,000 gpd of wastewater will not have a negative impact simply from that amount of effluent being added to the hydrologic system. Golder Associates mentioned this might be covered in an Environmental Impact Statement (EIS) which is close to completion. If so, please provide us a copy of the EIS.

If you have questions, please call Nancy Darling at 360.236.3040.

Sincerely,

Nancy Darling, LHG, CPSS Wastewater Management Section LOSS Program

Cc: Sue Allison, Olympia Property Group Kay Rotelle, DOH Denise Lahmann, DOH Chris Pitre, Golder Associates David Jensen, Jensen Engineering

Downloaded from:

http://www.doh.wa.gov/CommunityandEnvironment/WastewaterManagement/LOSSProgram/LOSSGuidance.aspx#Environmental_ On June 18, 2013 WASHINGTON DEPARTMENT OF HEALTH

LEVEL 1 NITRATE BALANCE FOR LARGE ON-SITE SEWAGE SYSTEM Prepared 2014-02-28 by Chris Pitre

Project name:	Port G	amble Uplar	nd LOSS	
Address, city and county:	Port G	amble Uplar	nd	
Completed by (name and title):	Chris I	Pitre, Golder	Associates	
Date:	2014-0	2-26	Valuas	Information Source
	Factor	Units	values	Default. A better value is 0.11-0.22 jusing PRISM and NAPD
Nitrate concentration in precipitation	N _R	mg/I as N	0.24	data.
Total nitrogen concentration in wastewater	Nw	mg/l	7.7	Assumed treatment level to achieve a maximum of 5 mg/L of nitrate as nitrogen at the alternate point of compliance.
Soil denitrification	d	unitless	0.1	Default
Aquifer thickness	b	ft	11	Average saturated thickness at seasonal low period (SeptOct. 2013).
Drainfield area	A _D	ft ²	500,000	Predesign Report (Jensen 2012). Half of the drainfield.
Distance from drainfield to property boundary	D _{pb}	ft	10	West boundary of the drain field is set back from the property boundary.
Aquifer width	W _A	ft	1,500	North-south drain field dimension. Predesign Report (Jensen 2012)
Aquifer hydraulic conductivity	к	ft/day	7	Average of sandy materials (6 monitoring wells and one piezometer).
Hydraulic gradient	i	ft/ft	0.025	Estimated from a groundwater elevation difference of 20 feet over a distance of 800 feet between the 220-foot and 200-foot water level contours (Figure 2).
Recharge	R	in/yr	20.30	Based on precipitation of 35.3 inches evapotranspiration of 15 inches (Golder 2002) and no observed runoff.
Nitrate concentration of upgradient ground water	N _B	mg/l	0	Sampling shows geochemical environment is too reducing for nitrate to be stable
Wastewater volume	v _w	gpd	100,000	Predesign Report (Jensen 2012) - daily flow design
Area between drainfield & property boundary	A _{RD}	ft ²	15,000	
Volume of recharge over drainfield	V _R	gpd	17,335	
Volume of infiltration from drainfield area	Vi	gpd	117,335	
Volume of discharge downgradient	V _{RD}	gpd	520	
Total volume of recharge	V _T	gpd	17,855	
Aquifer discharge	Q	gpd	21,600	Equals ~15 gpm. This should be much higher because ~45 gpm was measured in stream to north (Oct. 2013), and that represents only a small portion of the total groundwater flow from the site. Greater dilution may occur.
Total Nitrogen concentration from drainfield area	Ni	mg/l as N	5.94	
Downgradient ground water nitrogen concentration	N _{GW}	mg/l as N	5.01	
Downgradient ground water nitrogen concentration at property boundary	N _B	mg/l as N	5.00	
Output Values				
Groundwater nitrate value	N _{GW}	mg/l as N	5.01	Point of Compliance (POC) (at drain field egde)
Groundwater nitrate value	N _{GW AL}	mg/l as N	5.00	Alternative POC (at property boundary)

DOH 337-070

0.875

Instructions for Department of Health (DOH) Level 1 Nitrate Balance

DOH uses the Level 1 Nitrate Balance as a screening tool to identify LOSS which may have potential impacts to an unconfined or semi-confined surface aquifer. DOH may require a more comprehensive Nitrate Balance at sites where the Level 1 analysis indicates a potential moderate or significant impact to ground water. In general, a moderate impact is an increase greater than 2 mg/L above background. You can use the nitrate balance as a tool to understand the sensitivity of your LOSS on groundwater quality by varying values for effluent quality, effluent volume, and drainfield orientation. The equation used to build the Level 1 Nitrate Balance Excel spreadsheet is shown in <u>Appendix A</u>.

When you fill out the Nitrate Balance Excel spreadsheet use the most reliable site specific information you can find. Always list your information source on the spreadsheet or on a separate reference sheet if you need more room. Provide a copy of the information source or an on-line link to the source. Sources of information can include field measurements, pump test data, well logs, literature reviews, a local or regional study, and state or local databases. DOH will generally consider a nitrate balance supported by field measurements to be more reliable than one completed with literature values.

Based on the parameters you provide, the spread sheet will calculate the estimated nitrate concentration in the groundwater at the point of compliance. The default point of compliance is the downgradient edge of the drainfield. DOH may approve an alternative point of compliance up to but not exceeding the property boundary.

In your supporting information, identify and include all drainfields associated with the project or located on the property in the nitrate balance. One nitrate balance must be performed that includes all active drainfields unless the drainfields are separated by a groundwater boundary condition that would result in different points of compliance. For those cases, a separate nitrate balance should be performed for each drainfield.

As explained below, several parameters must be shown on a topographic map of 1:7200 scale or less. The parameters are drainfield area, point of compliance, alternative point of compliance (if applicable), aquifer width, hydraulic gradient, and the property boundary. The map MUST be readable at a printable size of 11"x17" or smaller. An example map is shown in <u>Appendix B</u>.

The nitrate balance(s) and supporting information can be submitted as a hard copy or electronically submitted as a PDF file.

For more information call 360.236.3040 or email Nancy.Darling@doh.wa.gov.

Input values

<u>Nitrate Concentration in Precipitation</u>: Precipitation in Washington State contains a small amount of nitrates from both natural and man-made sources.

Instructions: Use the default value of 0.24 mg/L

Total Nitrogen Concentration in Wastewater: This is the concentration of total nitrogen in the effluent measured at the end of the pipe before it enters the drainfield. Residential strength effluent can range from 30 to 100 mg/L. High strength effluent, such as RV waste, can have total nitrogen concentrations greater than 500 mg/L.

Instructions: Use the default value of 60 mg/L for residential strength effluent. This value is for systems that do not have advanced treatment and are not treating high strength waste. Any value other then 60 mg/L must be supported by sampling data or a supporting reference.

Soil Denitrification: Denitrification in the soil can reduce the amount of nitrates that reach groundwater. Denitrification occurs when soil oxygen is depleted and the microbes must obtain oxygen from another source. Microbes obtain oxygen from soil compounds in the following general order: $O_2>NO_3->Mn^{+4}>Fe^{+3}>SO_4^{-2}>CO_2$. The amount of denitrification is difficult to quantify and depends on several variables including soil carbon, soil moisture, soil temperature, and soil pH. In general, a coarse well drained soil will have less denitrification than a fine poorly drained soil.

Instructions: Use the default value of 10% denitrification. If you use a denitrification rate greater than 10%, you must provide site specific data or a supporting reference.

NOTE: The nitrate balance does not have a specific value for plant uptake. Some LOSS using shallow drip systems may qualify for an additional percent reduction in soil nitrates due to plant uptake. To qualify, your site must have a nutrient management plan that includes soil sampling and vegetation management. If you are taking a nitrate reduction for plant uptake, add the reduction to your denitrification value. Clearly identify which portion of the reduction is for plant uptake.

<u>Aquifer Thickness</u>: This value is used to calculate nitrate dilution in the upper-most aquifer through vertical mixing of the nitrate and groundwater.

Instructions: Use the default value of 20 feet or the actual aquifer thickness, whichever is less. Aquifer thickness can be estimated from a well log.

Drainfield Area: This is the area of the <u>primary</u> drainfield and does not include the reserve area except when part of the reserve area is being used. The area of the drainfield is used to calculate how much dilution is received from infiltrating precipitation (recharge). The down gradient edge of the drainfield is the default point of compliance (POC) for the nitrate concentration in groundwater.

Instructions: For a new LOSS, calculate the area of the primary drainfield based on the estimated drainfield size including the area between trenches. For an existing LOSS, field measure the area of the existing drainfield. Be sure to take credit if you use or plan to use 50% of the reserve area in addition to the primary ("150% of the primary"). Show the drainfield area on the nitrate balance map.

Distance from the drainfield to the property boundary: The LOSS owner may request an alternative POC and DOH may approve an alternative POC up to but not exceeding the property boundary. An alternative POC can sometimes help dilute the nitrate in the groundwater to an acceptable level. If there is a well, spring, or surface water before the property boundary, then use that point for the distance instead of the property boundary for the alternative POC.

Instructions: The nitrate balance must first always be calculated with a zero value for the distance to the property boundary. This allows the spreadsheet to calculate the POC at the downgradient edge of the drainfield. A second nitrate balance can then be completed for an alternative POC (if applicable) using the distance between the down gradient edge of the drainfield and the property boundary or other receptor such as a well, spring or surface water. Measure the distance in the direction of the groundwater flow. Show both the default POC at the edge of the drainfield and the alternate POC on the nitrate balance map.

<u>Aquifer Width</u>: The width of the aquifer is the width of the gross area of the drainfield (not the width of the property) perpendicular to the groundwater flow.

Instructions: Measure the primary drainfield perpendicular to the direction of groundwater flow. Similar to measuring the drainfield area, be sure to consider the additional width if you use or plan to use 50% of the reserve area. Place a dotted line on the nitrate balance map to show where you measured the drainfield width.

<u>Hydraulic conductivity of aquifer (K)</u>: Hydraulic conductivity is a measurement of an aquifer's ability to transmit water. Hydraulic conductivities can range from greater than 10,000 ft/day to less than 1 ft/day. A well sorted gravel aquifer has high conductivity, whereas a poorly sorted sand aquifer has a lower conductivity. A high conductivity results in greater dilution and lower nitrate concentrations.

Instructions: Use the most site specific value available. Pump test or slug test data from a nearby well is preferred. Many public supply wells will have a pump test on record with the county that will contain a value for hydraulic conductivity. Other options include drawdown data on well logs from nearby wells, values in a technical report for the local area, or literature values for hydraulic conductivity based on

aquifer materials. The table below shows typical literature values. If you are using the table, follow these steps:

- 1. Based on a geotechnical report or the nearest well logs, determine the materials of the uppermost aquifer (this may not be the aquifer where the well is completed).
- 2. Find the materials on the table that best matches the well log description and select a K value in the mid to lower range for that material. Input K using ft/day.

<i>K</i> (cm/s)	10^{2}	10 ¹	10 ⁰ =1	10-1	10-2	10-3	10-4	10-5	10-6	10-7	10-8	10-9	10-10	
<mark>K (ft/day)</mark>	10 ⁵	<mark>10,000</mark>	<mark>1,000</mark>	<mark>100</mark>	<mark>10</mark>	<mark>1</mark>	<mark>0.1</mark>	<mark>0.01</mark>	<mark>0.001</mark>	<mark>0.0001</mark>	10 ⁻⁵	10 ⁻⁶	10 ⁻⁷	
Relative Permeability	Pervious				Semi-Pervious					Impervious				
Aquifer	Good					Poor					None			
Unconsolidated Sand & Gravel	Wel G	Vell Sorted Well Sorted Sand Gravel or Sand & Gravel			and Very Fine Sand, Silt, avel Loess, Loam									
Unconsolidated Clay & Organic	Pe			Peat Layered Clay				Unweathered Clay						
Consolidated Rocks	Hig	ghly Frac	tured Ro	cks	Oil)il Reservoir Rocks		F1 Sanc	esh Istone	Free Limes Dolor	sh tone, nite	Fr Gra	esh anite	

Hydraulic Conductivity Table

Modified from J. Bear, 1972

<u>Hydraulic gradient</u>: This is the "slope" of the groundwater. Hydraulic gradients are generally less than three percent. The gradient, hydraulic conductivity, width of the aquifer, and depth of the mixing zone determine the aquifer flow under the drainfield.

Instructions: Water table elevations may be found on a water table map if one is available or can be calculated using water table elevations from nearby wells. Use a default value of 0.001 if the gradient is unknown. Place an arrow on the nitrate balance map to show the direction of groundwater flow.

<u>Recharge</u>: The rate of recharge is the amount of inches per year of rainfall that infiltrate into the ground surface. Recharge is a percentage of the annual precipitation. This value is converted to gallons per day (gpd) in the nitrate balance equation.

Instructions: Some counties have groundwater recharge rates available. Where recharge is unknown, use a default is 35% of annual rainfall in western Washington and 20% of annual rainfall in eastern Washington.

<u>Nitrate concentration of up-gradient groundwater</u></u>: This is the nitrate concentration upgradient of the primary drainfield.

Instructions: Use site specific groundwater quality data for this value. Provide two or more sample results from nearby wells preferably on or upgradient of the project property. The sample must come from the surface aquifer. If you are unable to get a sample, you may use recent data from nearby public drinking water wells, county records, or hydrogeology reports in the local area. If you know the name or location of the public water system you can find sample data at

<u>http://www.doh.wa.gov/ehp/dw/sentry.htm</u>. If you use well data, show the location of the wells on the nitrate balance map.

<u>Wastewater Volume</u>: For a new LOSS, the volume of wastewater is the daily operating capacity of the LOSS. The operating capacity is the design flow without a peaking factor. Use actual flow volumes if you have an existing LOSS with a reliable history of flow monitoring.

Instructions: For a new LOSS, determine the daily operating capacity from the pre-design report. For an existing LOSS use flow data if available or estimate the flow using information in Section-06150 of WAC 246-272B (the LOSS rule).

Appendix A - Nitrogen Balance Equation

 $N_{GW} = \frac{(Q \times N_B) + (V_W \times N_W(1-d)) + (V_R \times N_r)}{(Q \times N_B) + (V_W \times N_W(1-d)) + (V_R \times N_r)}$

 $Q + V_W + V_r$

 N_{GW} = nitrate concentration in groundwater (mg/L) at the selected point of compliance

 $Q = KibW_{A}(7.48)$

Q = aquifer flow (gallons/day)

i = gradient (ft/ft)

b =depth of mixing in Aquifer (feet)

W_A = width of aquifer (measured as width of drainfield) (feet)

 N_B = background (upgradient) ground water nitrate concentration (mg/L)

V_w = volume of wastewater (gallons/day)

 N_W = nitrogen concentration in wastewater (mg/L)

d = denitrification rate in soil and vadose zone (unitless)

 $V_{R} = A_{D} \times R \times 0.0017$

V_R = volume of recharge over drainfield (gallons/day)

 A_D = area of drainfield (ft²)

 N_r = nitrate concentration in precipitation (mg/L)

Appendix B - Level One Nitrate Balance Sample Map

Darling's Acres Proposed LOSS 2/5/2011

DOH Publication #337-069

Revised: October 2013

APPENDIX D AQUIFER PARAMETERS

APPENDIX E LABORATORY WATER QUALITY DATA

Report Number	Report Date	Contents
ALS Laboratory	/	
K1309407.01	10/10/2013	LOSS MW-1, -2, and -3 general water quality analyses
K1311873	11/6/2013	LOSS MW-4, -5, -6, and -7 & P-1, -2, -3, -4 general water quality analyses
K1312215	11/13/2013	LOSS MW-4, -5, -6, and -7 7 & P-1, -2, -3, -4 ammonia analyses
On-Site Enviror	nmental, Inc.	
1311-222	12/10/2013	Pittman Well

October 18, 2013

Analytical Report for Service Request No: K1309407 Revised Service Request No: K1309407.01

Jonathan Gerst, M.Sc Golder Associates, Incorporated 9 Monroe Parkway, Suite 270 Lake Oswego, OR 97035

RE: Port Gamble Upland Loss/1300649

Dear Jonathan:

Enclosed is the revised report for the samples submitted to our laboratory on September 11, 2013. For your reference, these analyses have been assigned our service request number K1309407.

The report was revised to show MDLs per client request.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at <u>www.alsglobal.com</u>. All results are intended to be considered in their entirety, and ALS Group USA Corp. dba ALS Environmental (ALS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please call if you have any questions. My extension is 3364. You may also contact me via Email at Howard.Holmes@alsglobal.com.

Respectfully submitted,

ALS Group USA Corp. dba ALS Environmental

Howard Holmes Project Manager

HH/rh

REVISED
12:01 pm, Oct 18, 2013

Page 1 of <u>33</u>

ADDRESS 1317 S. 13th Avenue, Kelso, WA 98626 USA | PHONE +1 360 577 7222 | FAX +1 360 636 1068 ALS Group USA, Corp. Part of the ALS Group An ALS Limited Company

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

Environmental 💭

Acronyms

ASTM	American Society for Testing and Materials
A2LA	American Association for Laboratory Accreditation
CARB	California Air Resources Board
CAS Number	Chemical Abstract Service registry Number
CFC	Chlorofluorocarbon
CFU	Colony-Forming Unit
DEC	Department of Environmental Conservation
DEQ	Department of Environmental Quality
DHS	Department of Health Services
DOE	Department of Ecology
DOH	Department of Health
EPA	U. S. Environmental Protection Agency
ELAP	Environmental Laboratory Accreditation Program
GC	Gas Chromatography
GC/MS	Gas Chromatography/Mass Spectrometry
LOD	Limit of Detection
LOQ	Limit of Quantitation
LUFT	Leaking Underground Fuel Tank
М	Modified
MCL	Maximum Contaminant Level is the highest permissible concentration of a substance
	allowed in drinking water as established by the USEPA.
MDL	Method Detection Limit
MPN	Most Probable Number
MRL	Method Reporting Limit
NA	Not Applicable
NC	Not Calculated
NCASI	National Council of the Paper Industry for Air and Stream Improvement
ND	Not Detected
NIOSH	National Institute for Occupational Safety and Health
PQL	Practical Quantitation Limit
RCRA	Resource Conservation and Recovery Act
SIM	Selected Ion Monitoring
TPH	Total Petroleum Hydrocarbons
tr	Trace level is the concentration of an analyte that is less than the PQL but greater
	than or equal to the MDL.

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated value.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.2 definition : Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.
- H The holding time for this test is immediately following sample collection. The samples were analyzed as soon as possible after receipt by the laboratory.

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- J The result is an estimated value.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- DOD-QSM 4.2 definition : Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- $i \,$ $\,$ The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.
- Q See case narrative. One or more quality control criteria was outside the limits.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimated value.
- J The result is an estimated value.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
 DOD-QSM 4.2 definition : Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a chromatographic interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.

Additional Petroleum Hydrocarbon Specific Qualifiers

- ${f F}$ The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

ALS Group USA Corp. dba ALS Environmental (ALS) - Kelso State Certifications, Accreditations, and Licenses

Agency	Web Site	Number
Alaska DEC UST	http://dec.alaska.gov/applications/eh/ehllabreports/USTLabs.aspx	UST-040
Arizona DHS	http://www.azdhs.gov/lab/license/env.htm	AZ0339
Arkansas - DEQ	http://www.adeq.state.ar.us/techsvs/labcert.htm	88-0637
California DHS (ELAP)	http://www.cdph.ca.gov/certlic/labs/Pages/ELAP.aspx	2286
DOD ELAP	http://www.denix.osd.mil/edqw/Accreditation/AccreditedLabs.cfm	L12-28
Florida DOH	http://www.doh.state.fl.us/lab/EnvLabCert/WaterCert.htm	E87412
Georgia DNR	http://www.gaepd.org/Documents/techguide_pcb.html#cel	881
Hawaii DOH	Not available	-
Idaho DHW	http://www.healthandwelfare.idaho.gov/Health/Labs/CertificationDrinkingW	
Indiana DOH	http://www.in.gov/isdh/24859.htm	C WA 01
	http://www.pjlabs.com/	L 12 27
150 17025	http://www.dog.louiciana.gov/portal/DIVISIONS/PublicPorticipationandPor	L12-27
Louisiana DEQ	mitSupport/LouisianaLaboratoryAccreditationProgram.aspx	3016
Maine DHS	Not available	WA0035
Michigan DEQ	http://www.michigan.gov/deq/0,1607,7-135-3307_4131_4156,00.html	9949
Minnesota DOH	http://www.health.state.mn.us/accreditation	053-999-368
Montana DPHHS	http://www.dphhs.mt.gov/publichealth/	CERT0047
Nevada DEP	http://ndep.nv.gov/bsdw/labservice.htm	WA35
New Jersey DEP	http://www.nj.gov/dep/oqa/	WA005
North Carolina DWQ	http://www.dwqlab.org/	605
Oklahoma DEQ	http://www.deq.state.ok.us/CSDnew/labcert.htm	9801
Oregon – DEO (NEL AP)	http://public.health.oregon.gov/LaboratoryServices/EnvironmentalLaborator	WA200001
South Carolina DHEC	http://www.scdhec.gov/environment/envserv/	61002
Texas CEO	http://www.tceq.texas.gov/field/qa/env_lab_accreditation.html	704427-08-TX
Washington DOE	http://www.ecy.wa.gov/programs/eap/labs/lab-accreditation.html	C1203
Wisconsin DNR	http://dnr.wi.gov/	998386840
Wyoming (EPA Region 8)	http://www.epa.gov/region8/water/dwhome/wyomingdi.html	-
Kelso Laboratory Website	www.alsglobal.com	NA

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. A complete listing of specific NELAP-certified analytes, can be found in the certification section at www.caslab.com or at the accreditation bodies web site

Please refer to the certification and/or accreditation body's web site if samples are submitted for compliance purposes. The states highlighted above, require the analysis be listed on the state certification if used for compliance purposes and if the method/anlayte is offered by that state.

ALS ENVIRONMENTAL

Client: Golder Associates, Incorporated Port Gamble Upland Loss/ 1300649 **Project:** Sample Matrix: Water

Service Request No.: Date Received:

K1309407 09/11/13

Case Narrative

All analyses were performed consistent with the quality assurance program of ALS Environmental. This report contains analytical results for samples designated for Tier II data deliverables. When appropriate to the method, method blank results have been reported with each analytical test. Additional quality control analyses reported herein include: Laboratory Duplicate (DUP), Matrix Spike (MS), and Laboratory Control Sample (LCS).

Sample Receipt

Three water samples were received for analysis at ALS Environmental on 09/11/13. The samples were received in good condition and consistent with the accompanying chain of custody form. The samples were stored in a refrigerator at 4°C upon receipt at the laboratory.

General Chemistry Parameters

No anomalies associated with the analysis of these samples were observed.

Dissolved Metals

Matrix Spike Recovery Exceptions:

The control criteria for matrix spike recovery of Calcium for the Batch QC sample were not applicable. The analyzed concentration in the sample was significantly higher than the added spike concentration, preventing accurate evaluation of the spike recovery.

No other anomalies associated with the analysis of these samples were observed.

Hevaldblun Approved by

		CH	HAIN OF CUSTODY								SR# K13U77U1			
1317 South 13	8th Ave., Kelso, WA 986	26 360.	360.577.7222 800.695.7222 360.636.1068 (fax) PAGE					OF COC#						
1317 South 13 PROJECT NAME Port Gramble Upla PROJECT NUMBER 1300649 PROJECT MANAGER Chris Pitre, COMPANY NAME Golder Assoc. Inc. ADDRESS 9 Monroe Pkmy Ste CITY/STATE/ZIP Lake Oswego, OR E-MAIL ADDRESS JGENST@ golder.cc PHONE # (503) 607 - 1820 SAMPLE I.D. DATE TI LOSS MW-1 9/10/13 16 LOSS MW-2 9/10/13 16 LOSS MW-3 9/10/13 15	Bith Ave., Kelso, WA 986 and LOSS C/O Jonathun 270 97035 97035 97035 AX# MATE 1ME LAB I.D. 25 Wate 45 9707 45 9707 910 9707 925 Wate 948 9707 95 Wate 96 9707 97 97035 97 97035 97 97035 97 97035 97 97035 97 97035 980 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97	Gerst Gerst NX V 2 V 2 V 2 V 2 V 2 V 2 V 2 V 2 V 2 V 2	200 VIAINERS	800.695.757 Volatile Oganics by GC/MS Hydrocs B270L D 8270L D 8270L D 8270L D 8270L D 8270L D 8270L D 9270L	2 360.6 1664 HEM D 1664 HEM D 1664 SGIT	Pesticides/Herb/Congeners	Metals Collics 81511 8151 Xx Netals Total or Dissolved Dissolved Xx	PAG (circle) DH, Cond. Chrom [] (circle) 1, 155, 7-01 000, 000, 000, 000, 000, 000, 000, 0	DOC, NH3-N, CO2, THAI, TO2, F, NO2, TOX 9029/13, TBAI, TOC, NO2, TKN, TOC, TOX 9020/13, TBAIDOC, TOC,	Alkalinity 1 CO3 1 1650 5061 OC	Dissolved Gases 00	Martan Hartan Hartan Hartan O		REMARKS
an an aitean ata an	2011-22-02-02-02-02-02-02-02-02-02-02-02-02-													an a
														984001240120120357779720099798807990799094034404444444444
REPORT REQUIREMENTS	INVOICE INFORMATI D. # <u>1300649</u> II TO: <u>Golder Assoc</u>	ON c Inc	Circle which r Total Metal Dissolved Meta	metals are to be ls: Al As Sb als: Al As Sb E STATE HYD	analyzed: Ba Be E Ba Be I ROCARB	Ca Cd G Cd Cd	Co Cr C Co Cr C	L Fe Pb Cu Fe Pb Cu Fe Pb	Mg Mn Mg MD WI NO	Mo Ni Mo Ni RTHWE	K Ag Na Ag Q ST OTHE	a Se : a) Se R:	Sr TI S	Sn V Zn Hg Sn V Zn Hg _ (CIRCLE ONE)
II. Report Dup., MS, MSD as required III. CLP Like Summary (no raw data) IV. Data Validation Report V. EDD	IRNAROUND REQUIRE 24 hr 48 h 5 day Standard (15 working c Provide FAX Results 10 - day TAT, no Requested Report Dat	in: Jays) extra charge te PAH	SPECIAL II Analy Sample	Shipment c	S/COMME email	SDA regu	ultion S	<mark>t∂ t</mark> . samples (-ward	∦ x if appl	icable)			
RELINQUISHED, BY: 9/11/13 Signature Date/Time	Anni	· RECEI	Date/Vir	100 13 100	Signat	REL		D BY: ate/Time		Sign	ature	RECEI	VED BY	/: /Time
Printed Name Firm	Boc. Inc. Printed Nar	ne	Firm	AUS	Printe	d Name	Fi	rm		Print	ed Name		Firm	

ALS	P	CLA	C							
Cooler Receipt and Preservation Form										
Client / Project: Golder Assoc Service Request K13 OC	7407									
Received: 9/11/13 Opened: 9/11/13 By: BT Unloaded: 9/11	//3 By:	15+								
1 Samples were received via? Mail Fad Ex UDS DHI DDV Counting Ward	Particular d	, ,								
2 Samples were received in: (circle) (Coolar) Pour Erustance Other	Delivered	N 7 4								
3 Were clustody seals on coolere? NA (V) N If you have many and where?	mat	IVA								
If present were custody seals intact?	ore:		N							
	neu:	<u> </u>	IN I							
Raw Corrected. Raw Corrected Corrected		NA	Filed							
19 2.0 0.3 0.4 +0.1 342										
	· · · ·									
4. Packing material: Inserts Baggies Babble Wran Gel Packs Wet Ice Dry Ice Sleeves		ا د								
5. Were custody papers properly filled out (ink, signed, etc.)?	NA	10 TI	A							
6. Did all bottles arrive in good condition (unbroken)? Indicate in the table below	NA	N N	N							
7. Were all sample labels complete (i.e analysis preservation etc.)?	NA	- A	N							
8. Did all sample labels and tags agree with custody papers? Indicate major discrepancies in the table on pa	NA NA	A A A A A A A A A A A A A A A A A A A	N							
 Were appropriate bottles/containers and volumes received for the tests indicated? 	NA	$\overline{\mathbb{O}}$	N							
10 Were the pH-preserved bottles (see SMO GEN SOP) received at the appropriate pH? Indicate in the table	helow NA	$\widetilde{\mathfrak{Q}}$	N							
11 Were VOA vials received without headspace? Indicate in the table below	NA	V	N .							
12. Was C12/Res negative?	NA)	v	N							
	<u>س</u>	*								
Sample ID on Bottle Sample ID on COC	ntified by:									

Sample ID	Bottle Count Bottle Type	Temp spa	ce Broke	рН	Reagent	added	Number	Initials	Time
						-			
					······································		1		
tes, Discrepancies, & Resolui	tions:	lines	No	1 m	asker	0 +0	u mes	Hale-	- 17
~	- Aller	405	,		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				

7

Page____of_

ALS Group USA, Corp. dba ALS Environmental

Analytical Report

Client:	Golder Associates, Incorporated
Project:	Port Gamble Upland Loss/1300649
Sample Matrix:	Water
Analysis Method:	300.0

 Service Request:
 K1309407

 Date Collected:
 09/10/13

 Date Received:
 09/11/13

Units: mg/L Basis: NA

Chloride

Sample Name	Lab Code	Result	MRL	MDL	Dil.	Date Analyzed	0
LOSS MW-1	K1309407-001	5.85	0.40	0.06	2	09/11/13 14:59	
LOSS MW-2	K1309407-002	4.48	0.40	0.06	2	09/11/13 15:15	
LOSS MW-3	K1309407-003	1.28	0.40	0.06	2	09/11/13 15:30	
Method Blank	K1309407-MB1	ND U	0.20	0.03	1	09/11/13 09:45	
Method Blank	K1309407-MB2	ND U	0.20	0.03	1	09/11/13 18:05	

ALS Group USA, Corp. dba ALS Environmental

QA/QC Report

Client: Project	Golder Associates	s, Incorpor	ated 300649			Service Requ	iest: K13094 ted: NA	407
Sample Matrix:	Water	in u 1055/1	500047			Date Conce Date Receiv Date Analyz	ved: NA zed: 09/11/1	3
			Replicate General C	e Sample Sum hemistry Para	amary ameters			
Sample Name:	Batch QC					U	nits: mg/L	
Analyte Name	Analysis Method	MDI	MDI	Sample Result	Duplicate Sample KQ1310274- 33DUP Besult	Average	DDD	RPD Limit
Chloride	300.0	0.40	0.06	3.06	3.02	<u>Average</u> 3.04	1 1	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

ALS Group USA, Corp. dba ALS Environmental

QA/QC Report

Client:	Golder Associates, Incorporated		Service Request	: K1309407	
Project:	Port Gamble Upland Loss/1300649		Date Collected:	N/A	
Sample Matrix:	Water		Date Received:	N/A	
			Date Analyzed:	09/11/13	
		Duplicate Matrix Spike S Chloride	Summary		
Sample Name:	Batch QC		Units:	mg/L	
Lab Code:	KQ1310274-33		Basis:	NA	
Analysis Method:	300.0				
		Matrix Spike KQ1310274-33MS	Duplicate Matrix Spike KQ1310274-33DMS		
	Sample	Spike	Spike	% Rec	RPD

% Rec

101

Result

13.0

Amount

10.0

% Rec

100

Limits

90-110

RPD

<1

Limit

20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Analyte Name

Chloride

Result

3.06

Result

13.1

Amount

10.0
QA/QC Report

Client:	Golder Associates, Incorporated		Service Re	quest:	K130940	7
Project:	Port Gamble Upland Loss/1300649		Date Analy	zed:	09/11/13	
Sample Matrix:	Water					
	Lab	Control Sample Summary				
		Chloride				
Analysis Method:	300.0		Units:		mg/L	
			Basis:		NA	
			Analysis L	ot:	357867	
			Spike			% Rec
Sample Name	Lab Code	Result	Amount	% Rec		Limits
Lab Control Sample	K1309407-LCS1	4.73	5.00	95		90-110
Lab Control Sample	K1309407-LCS2	4.76	5.00	95		90-110

Analytical Report

Client:	Golder Associates, Incorporated
Project:	Port Gamble Upland Loss/1300649
Sample Matrix:	Water
Analysis Method:	300.0

Service Request: K1309407 Date Collected: 09/10/13 Date Received: 09/11/13

Units: mg/L Basis: NA

Nitrate as Nitrogen

Sample Name	Lab Code	Result	MRL	MDL	Dil.	Date Analyzed	Q
LOSS MW-1	K1309407-001	ND U	0.10	0.01	2	09/11/13 14:59	
LOSS MW-2	K1309407-002	ND U	0.10	0.01	2	09/11/13 15:15	
LOSS MW-3	K1309407-003	ND U	0.10	0.01	2	09/11/13 15:30	
Method Blank	K1309407-MB1	ND U	0.050	0.005	1	09/11/13 09:45	
Method Blank	K1309407-MB2	ND U	0.050	0.005	1	09/11/13 18:05	

QA/QC Report

Client:	Golder Associates, Incorporated	Service Request:	K1309407
Project	Port Gamble Upland Loss/1300649	Date Collected:	NA
Sample Matrix:	Water	Date Received:	NA
Analysis Method:	300.0	Units:	mg/L
		Basis:	NA

Duplicate Sample Summary

Nitrate as Nitrogen

				Sample	Duplicate			RPD	Date
Sample Name:	Lab Code:	MRL	MDL	Result	Result	Average	RPD	Limit	Analyzed
Batch QC	K1309409-001DUP	0.10	0.01	0.13	0.13	0.126	2	20	09/11/13
Batch QC	K1309410-001DUP	0.10	0.01	0.28	0.28	0.278	<1	20	09/11/13
Batch QC	K1309411-001DUP	0.10	0.01	0.25	0.25	0.252	<1	20	09/11/13
Batch QC	KQ1310274-33DUP	0.10	0.01	0.08	0.08	0.0774	2	20	09/11/13

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

QA/QC Report

Client:	Golder Assoc	iates, Incorpo	orated			Serv	vice Reques	t: K1	309407	
Project:	Port Gamble I	Upland Loss/	1300649			Dat	e Collected:	N/.	A	
Sample Matrix:	Water					Dat	e Received:	N/.	А	
						Dat	e Analyzed:	09	/11/13	
			Duplicat N	e Matrix Sj itrate as N	pike Sum itrogen	mary				
Sample Name:	Batch QC						Units	: mg	g/L	
Lab Code:	K1309409-00	1					Basis	: NA	A	
Analysis Method:	300.0									
			Matrix K130940	x Spike 9-001MS		Duplicate M K1309409-	atrix Spike			
	Sample		Spike			Spike		% Rec		RPD
Analyte Name	Result	Result	Amount	% Rec	Result	Amount	% Rec	Limits	RPD	Limit

101

4.18

4.00

101

90-110

<1

20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Nitrate as Nitrogen

0.13

4.17

QA/QC Report

Client:	Golder Assoc	iates, Incorpo	orated			Serv	vice Reques	t: K1	309407	
Project:	Port Gamble	Upland Loss/	1300649			Dat	e Collected:	N/.	A	
Sample Matrix:	Water					Dat	e Received:	N/.	A	
						Dat	e Analyzed:	09/	/11/13	
			Duplicat	e Matrix S	pike Sumi	mary				
			Ν	itrate as N	itrogen					
Sample Name:	Batch QC						Units	: mg	g/L	
Lab Code:	K1309410-00)1					Basis:	NA	A	
Analysis Method:	300.0									
			Matrix	x Spike		Duplicate M	atrix Spike			
			K130941	0-001MS		K1309410-	-001DMS			
	Sample		Spike			Spike		% Rec		RPD
Analyte Name	Result	Result	Amount	% Rec	Result	Amount	% Rec	Limits	RPD	Limit

102

4.38

4.00

103

90-110

<1

20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Nitrate as Nitrogen

0.28

4.37

QA/QC Report

Client:	Golder Assoc	iates, Incorpo	orated			Serv	vice Reques	t: K1	309407	
Project:	Port Gamble	Upland Loss/	1300649			Dat	e Collected:	N/.	А	
Sample Matrix:	Water					Dat	e Received:	N/.	A	
						Dat	e Analyzed:	09/	/11/13	
			Duplicat	e Matrix S	pike Sum	mary				
			Ν	itrate as N	itrogen					
Sample Name:	Batch QC						Units	: mg	g/L	
Lab Code:	K1309411-00)1					Basis:	NA	A	
Analysis Method:	300.0									
			Matrix	x Spike		Duplicate M	atrix Spike			
			K130941	1-001MS		K1309411-	-001DMS			
	Sample		Spike			Spike		% Rec		RPD
Analyte Name	Result	Result	Amount	% Rec	Result	Amount	% Rec	Limits	RPD	Limit

101

4.33

4.00

102

90-110

<1

20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Nitrate as Nitrogen

0.25

4.30

QA/QC Report

Client:	Golder Associates, Inco	orporated	Service Request:	K1309407	
Project:	Port Gamble Upland L	oss/1300649	Date Collected:	N/A	
Sample Matrix:	Water		Date Received:	N/A	
			Date Analyzed:	09/11/13	
		Duplicate Matrix Spike Nitrate as Nitrog	Summary en		
Sample Name:	Batch QC		Units:	mg/L	
Lab Code:	KQ1310274-33		Basis:	NA	
Analysis Method:	300.0				
		Matrix Spike	Duplicate Matrix Spike		
		KQ1310274-33MS	KQ1310274-33DMS		
	Sample	Spike	Spike %	% Rec	RPD

% Rec

101

Result

10.2

Amount

10.0

% Rec

101

Limits

90-110

RPD

<1

Limit

20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Analyte Name

Nitrate as Nitrogen

Result

0.08

Result

10.2

Amount

QA/QC Report

Client:	Golder Associates, Incorporated		Service Re	quest:	K130940	7
Project:	Port Gamble Upland Loss/1300649		Date Analy	zed:	09/11/13	
Sample Matrix:	Water					
	Lab (Control Sample Summary				
		Nitrate as Nitrogen				
Analysis Method:	300.0		Units:		mg/L	
			Basis :		NA	
			Analysis L	ot:	357867	
			Spike			% Rec
Sample Name	Lab Code	Result	Amount	% Rec		Limits
Lab Control Sample	K1309407-LCS1	15.6	14.5	107		90-110

Analytical Report

Client:	Golder Associates, Incorporated					
Project:	Port Gamble Upland Loss/1300649					
Sample Matrix:	Water					
Analysis Method:	300.0					

 Service Request:
 K1309407

 Date Collected:
 09/10/13

 Date Received:
 09/11/13

Units: mg/L Basis: NA

Sulfate

Sample Name	Lab Code	Result	MRL	MDL	Dil.	Date Analyzed	Q
LOSS MW-1	K1309407-001	20.9	1.0	0.1	10	09/12/13 03:32	
LOSS MW-2	K1309407-002	15.5	0.20	0.02	2	09/11/13 15:15	
LOSS MW-3	K1309407-003	10.3	0.20	0.02	2	09/11/13 15:30	
Method Blank	K1309407-MB1	ND U	0.10	0.01	1	09/11/13 09:45	
Method Blank	K1309407-MB2	ND U	0.10	0.01	1	09/11/13 18:05	

QA/QC Report

Client: Project	Golder Associates Port Gamble Upla	, Incorpoi nd Loss/1	rated 300649			Service Reque Date Collect	est: K1309 ed: NA	407
Sample Matrix:	Water					Date Receive Date Analyze	ed: NA ed: 09/11/2	13
			Replicate General Cl	e Sample Sum hemistry Para	mary ameters			
Sample Name: Lab Code:	Batch QC KO1310274-33					Un Ba	its: mg/L sis: NA	
An aluta Nama	Analysis	MDI	MDI	Sample	Duplicate Sample KQ1310274- 33DUP			DDD I imid
Analyte Name Sulfate	300.0	0.20	0.02	5.23	5.06	Average 5.15	<u> </u>	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

QA/QC Report

Client:	Golder Associates, Inco	rporated	Service Request	t: K1309407	
Project:	Port Gamble Upland Lo	oss/1300649	Date Collected:	N/A	
Sample Matrix:	Water		Date Received:	N/A	
			Date Analyzed:	09/11/13	
		Duplicate Matrix Spike	Summary		
		Sulfate			
Sample Name:	Batch QC		Units:	mg/L	
Lab Code:	KQ1310274-33		Basis:	NA	
Analysis Method:	300.0				
		Matrix Spike KQ1310274-33MS	Duplicate Matrix Spike KQ1310274-33DMS		
	Sample	Spike	Spike	% Rec	RPD

% Rec

103

Result

15.5

Amount

10.0

% Rec

103

Limits

90-110

RPD

<1

Limit

20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Analyte Name

Sulfate

Result

5.23

Result

15.5

Amount

QA/QC Report

Client: Project:	Golder Associates, Incorporated Port Gamble Upland Loss/130064	9	Service Ro Date Anal	equest: vzed:	K1309407	7
Sample Matrix:	Water	, ,	Dute I III	<i></i>	09/11/19	
	La	b Control Sample Summary				
		Sulfate				
Analysis Method:	300.0		Units:		mg/L	
			Basis:		NA	
			Analysis I	Lot:	357867	
			Spike			% Rec
Sample Name	Lab Code	Result	Amount	% Rec		Limits
Lab Control Sample	K1309407-LCS1	4.82	5.00	96		90-110
Lab Control Sample	K1309407-LCS2	4.79	5.00	96		90-110

Analytical Report

Client:	Golder Associates, Incorporated				
Project:	Port Gamble Upland Loss/1300649				
Sample Matrix:	Water				
Analysis Method:	SM 2510 B				

Service Request: K1309407 Date Collected: 09/10/13 Date Received: 09/11/13 Units: uMHOS/cm Basis: NA

Conductivity at 25 Degrees Celsius

						Date	
Sample Name	Lab Code	Result	MRL	MDL	Dil.	Analyzed	Q
LOSS MW-1	K1309407-001	238	2.0	0.4	1	09/26/13 17:55	
LOSS MW-2	K1309407-002	223	2.0	0.4	1	09/26/13 17:55	
LOSS MW-3	K1309407-003	136	2.0	0.4	1	09/26/13 17:55	
Method Blank	K1309407-MB1	0.9 J	2.0	0.4	1	09/26/13 17:55	

QA/QC Report

Client:	Golder Associates, Incorporated Port Gamble Upland Loss/1300649					Serv	vice Request:	K1309407	
Project	Port Gamble Upl	and Loss/1300	649			Da	te Collected:	NA	
Sample Matrix:	Water					Da	ite Received:	NA	
						Da	te Analyzed:	09/26/13	
			Replicate	Sample S	ummary				
		0	General Cl	nemistry P	arameters				
Sample Name:	Batch QC						Units:	uMHOS	S/cm
Lab Code:	K1310117-001						Basis:	NA	
		Analysis			Sample	Duplicate Sample K1310117- 001DUP			
Analyte Name		Method	MRL	MDL	Result	Result	Average	RPD	RPD Limit
Conductivity at 25 Degre	ees Celsius	SM 2510 B	2.0	0.4	1260	1250	1260	<1	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

QA/QC Report

Client: Project: Sample Matrix:	Golder Associ Port Gamble U Water	ates, Incorporated Jpland Loss/130064	9	Service Ro Date Anal	equest: yzed:	K1309407 09/26/13					
	Lab Control Sample Summary Conductivity at 25 Degrees Celsius										
Analysis Method:	SM 2510 B			Units: Basis: Analysis I	Lot:	uMHOS/cm NA 360481					
Sample Name Lab Control Sample		Lab Code K1309407-LCS1	Result 327	Spike Amount 330	% Rec 99	% Rec Limits 86-113					

- Cover Page -INORGANIC ANALYSIS DATA PACKAGE

Client:Golder Associates, IncorporatedProject Name:Port Gamble Upland LossProject No.:1300649

Service Request: K1309407

Sample Name:	Lab Code:
LOSS MW-1	K1309407-001
LOSS MW-2	K1309407-002
LOSS MW-3	K1309407-003
Method Blank	K1309407-MB
Batch QC1LD	K1309536-001D
Batch QC1LS	K1309536-001S

Client:	Golder Associates,	Incorporated	Service Request:	K1309407
Project No.:	1300649		Date Collected:	09/10/13
Project Name:	Port Gamble Upland	Loss	Date Received:	09/11/13
Matrix:	WATER		Units:	ug/L
			Basis:	NA

Sample Name: LOSS MW-1

Lab Code: K1309407-001

Analyte	Analysis Method	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Calcium	6010C	20.0	0.9	1.0	09/17/13	09/18/13	17300		
Iron	6010C	20.0	3.0	1.0	09/17/13	09/18/13	380		
Magnesium	6010C	5.0	0.3	1.0	09/17/13	09/18/13	15200		
Manganese	6010C	1.00	0.07	1.0	09/17/13	09/18/13	247		
Potassium	6010C	200	60.0	1.0	09/17/13	09/18/13	1740		
Sodium	6010C	200	20.0	1.0	09/17/13	09/18/13	7270		

Client:	Golder Associates,	Incorporated	Service Request:	K1309407
Project No.:	1300649		Date Collected:	09/10/13
Project Name:	Port Gamble Upland	Loss	Date Received:	09/11/13
Matrix:	WATER		Units:	ug/L
			Basis:	NA

Sample Name: LOSS MW-2

Lab Code: K1309407-002

Analyte	Analysis Method	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Calcium	6010C	20.0	0.9	1.0	09/17/13	09/18/13	14700		
Iron	6010C	20.0	3.0	1.0	09/17/13	09/18/13	76.5		
Magnesium	6010C	5.0	0.3	1.0	09/17/13	09/18/13	12500		
Manganese	6010C	1.00	0.07	1.0	09/17/13	09/18/13	383		
Potassium	6010C	200	60.0	1.0	09/17/13	09/18/13	2460		
Sodium	6010C	200	20.0	1.0	09/17/13	09/18/13	10200		

Client:	Golder Associates,	Incorporated	Service Request:	K1309407
Project No.:	1300649		Date Collected:	09/10/13
Project Name:	Port Gamble Upland	Loss	Date Received:	09/11/13
Matrix:	WATER		Units:	ug/L
			Basis:	NA

Sample Name: LOSS MW-3

Lab Code: K1309407-003

Analyte	Analysis Method	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Calcium	6010C	20.0	0.9	1.0	09/17/13	09/18/13	8740		
Iron	6010C	20.0	3.0	1.0	09/17/13	09/18/13	193		
Magnesium	6010C	5.0	0.3	1.0	09/17/13	09/18/13	6320		
Manganese	6010C	1.00	0.07	1.0	09/17/13	09/18/13	265		
Potassium	6010C	200	60.0	1.0	09/17/13	09/18/13	1450		
Sodium	6010C	200	20.0	1.0	09/17/13	09/18/13	6940		

Client:	Golder Associates,	Incorporated	Service Re	quest:	K1309407
Project No.:	1300649		Date Coll	ected:	
Project Name:	Port Gamble Upland	Loss	Date Rec	eived:	
Matrix:	WATER		1	Units:	ug/L
			1	Basis:	NA

Sample Name: Method Blank

Lab Code: K1309407-MB

Analyte	Analysis Method	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	с	Q
Calcium	6010C	20.0	0.9	1.0	09/17/13	09/18/13	0.9	υ	
Iron	6010C	20.0	3.0	1.0	09/17/13	09/18/13	3.0	U	
Magnesium	6010C	5.0	0.3	1.0	09/17/13	09/18/13	0.3	J	
Manganese	6010C	1.00	0.07	1.0	09/17/13	09/18/13	0.07	υ	
Potassium	6010C	200	60.0	1.0	09/17/13	09/18/13	60.0	U	
Sodium	6010C	200	20.0	1.0	09/17/13	09/18/13	20.0	U	

Metals - 5A -SPIKE SAMPLE RECOVERY

Client:	Golder Associates, Incorporated	Service Request:	K1309407
Project No.:	1300649	Units:	UG/L
Project Name:	Port Gamble Upland Loss	Basis:	NA
Matrix:	WATER		

Sample Name: Batch QC1LS

Lab Code: K1309536-001S

Analyte	Control Limit %R	Spike Result C	Sample Result C	Spike Added	%R	Q	Method
Calcium		68800	59800	10000.00	90.0		6010C
Iron		22500	21600	1000.00	90.0		6010C
Magnesium	75 - 125	21100	10800	10000.00	103.0		6010C
Manganese	75 - 125	928	452	500.00	95.2		6010C
Potassium	75 - 125	25200	14600	10000.00	106.0		6010C
Sodium	75 - 125	10800	465	10000.00	103.4		6010C

Metals

- 6 -DUPLICATES

Client:	Golder Associates, Incorporated	Service Request:	К1309407
Project No.:	1300649	Units:	UG/L
Project Name:	Port Gamble Upland Loss	Basis:	NA
Matrix:	WATER		

Sample Name: Batch QC1LD Lab Code: K1309536-001D													
Analyte	Control Limit	Sample (S)	С	Duplicate (D)	С	RPD	Q	Method					
Calcium	20	59800		61700		3.1		6010C					
Iron	20	21600		22300		3.2		6010C					
Magnesium	20	10800		11000		1.8		6010C					
Manganese	20	452		466		3.1		6010C					
Potassium	20	14600		15100		3.4		6010C					
Sodium		465		453		2.6		6010C					

An empty field in the Control Limit column indicates the control limit is not applicable.

Metals - 7 -LABORATORY CONTROL SAMPLE

Client: Golder Associates, Incorporated

Service Request: K1309407

Project No.: 1300649

Project Name: Port Gamble Upland Loss

Aqueous LCS Source: Inorganic Ventures Solid LCS Source:

	Aqueous	(ug/L)		Solid (mg/kg)										
Analyte	True	Found	%R	True	Found	C	Limits	۶R						
Calcium	12500	12600	100.8											
Iron	2500	2530	101.2											
Magnesium	12500	12600	100.8											
Manganese	1250	1240	99.2											
Potassium	12500	12500	100.0											
Sodium	12500	12400	99.2											

November 6, 2013

Analytical Report for Service Request No: K1311873

Jonathan Gerst, M.Sc Golder Associates, Incorporated 9 Monroe Parkway, Suite 270 Lake Oswego, OR 97035

RE: Port Gamble Upland Loss/1300649

Dear Jonathan:

Enclosed are the results of the samples submitted to our laboratory on November 01, 2013. For your reference, these analyses have been assigned our service request number K1311873.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at <u>www.alsglobal.com</u>. All results are intended to be considered in their entirety, and ALS Group USA Corp. dba ALS Environmental (ALS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please call if you have any questions. My extension is 3364. You may also contact me via Email at Howard.Holmes@alsglobal.com.

Respectfully submitted,

ALS Group USA Corp. dba ALS Environmental

oward Holmes

Project Manager

HH/ln

Page 1 of _____

ADDRESS 1317 S. 13th Avenue, Kelso, WA 98626 USA | PHONE +1 360 577 7222 | FAX +1 360 636 1068 ALS Group USA, Corp. Part of the ALS Group An ALS Limited Company

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

Acronyms

ASTM	American Society for Testing and Materials
A2LA	American Association for Laboratory Accreditation
CARB	California Air Resources Board
CAS Number	Chemical Abstract Service registry Number
CFC	Chlorofluorocarbon
CFU	Colony-Forming Unit
DEC	Department of Environmental Conservation
DEQ	Department of Environmental Quality
DHS	Department of Health Services
DOE	Department of Ecology
DOH	Department of Health
EPA	U. S. Environmental Protection Agency
ELAP	Environmental Laboratory Accreditation Program
GC	Gas Chromatography
GC/MS	Gas Chromatography/Mass Spectrometry
LOD	Limit of Detection
LOQ	Limit of Quantitation
LUFT	Leaking Underground Fuel Tank
Μ	Modified
MCL	Maximum Contaminant Level is the highest permissible concentration of a substance
	allowed in drinking water as established by the USEPA.
MDL	Method Detection Limit
MPN	Most Probable Number
MRL	Method Reporting Limit
NA	Not Applicable
NC	Not Calculated
NCASI	National Council of the Paper Industry for Air and Stream Improvement
ND	Not Detected
NIOSH	National Institute for Occupational Safety and Health
PQL	Practical Quantitation Limit
RCRA	Resource Conservation and Recovery Act
SIM	Selected Ion Monitoring
TPH	Total Petroleum Hydrocarbons
tr	Trace level is the concentration of an analyte that is less than the PQL but greater
	than or equal to the MDL.

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated value.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
 DOD-QSM 4.2 definition : Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.
- H The holding time for this test is immediately following sample collection. The samples were analyzed as soon as possible after receipt by the laboratory.

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- J The result is an estimated value.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- DOD-QSM 4.2 definition : Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- $i \,$ $\,$ The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.
- Q See case narrative. One or more quality control criteria was outside the limits.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimated value.
- J The result is an estimated value.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
 DOD-QSM 4.2 definition : Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a chromatographic interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.

Additional Petroleum Hydrocarbon Specific Qualifiers

- ${f F}$ The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

ALS Group USA Corp. dba ALS Environmental (ALS) - Kelso State Certifications, Accreditations, and Licenses

Agency	Web Site	Number
Alaska DEC UST	http://dec.alaska.gov/applications/eh/ehllabreports/USTLabs.aspx	UST-040
Arizona DHS	http://www.azdhs.gov/lab/license/env.htm	AZ0339
Arkansas - DEQ	http://www.adeq.state.ar.us/techsvs/labcert.htm	88-0637
California DHS (ELAP)	http://www.cdph.ca.gov/certlic/labs/Pages/ELAP.aspx	2286
DOD ELAP	http://www.denix.osd.mil/edqw/Accreditation/AccreditedLabs.cfm	L12-28
Florida DOH	http://www.doh.state.fl.us/lab/EnvLabCert/WaterCert.htm	E87412
Georgia DNR	http://www.gaepd.org/Documents/techguide_pcb.html#cel	881
Hawaii DOH	Not available	-
Idaho DHW	http://www.healthandwelfare.idaho.gov/Health/Labs/CertificationDrinkingW	
Indiana DOLL	http://www.in.gov/isdh/24859.htm	C WA 01
	http://www.pjlabs.com/	C-WA-01
150 17025	http://www.dog.lowiciong.gov/portal/DIVISIONS/DuklioDorticingtionondDor	L12-27
Louisiana DEQ	mitSupport/LouisianaLaboratoryAccreditationProgram.aspx	3016
Maine DHS	Not available	WA0035
Michigan DEQ	http://www.michigan.gov/deq/0,1607,7-135-3307_4131_4156,00.html	9949
Minnesota DOH	http://www.health.state.mn.us/accreditation	053-999-368
Montana DPHHS	http://www.dphhs.mt.gov/publichealth/	CERT0047
Nevada DEP	http://ndep.nv.gov/bsdw/labservice.htm	WA35
New Jersey DEP	http://www.nj.gov/dep/oqa/	WA005
North Carolina DWQ	http://www.dwqlab.org/	605
Oklahoma DEQ	http://www.deq.state.ok.us/CSDnew/labcert.htm	9801
Oregon – DEO (NELAP)	http://public.health.oregon.gov/LaboratoryServices/EnvironmentalLaborator vAccreditation/Pages/index.aspx	WA200001
South Carolina DHEC	http://www.scdhec.gov/environment/envserv/	61002
Texas CEQ	http://www.tceq.texas.gov/field/qa/env_lab_accreditation.html	1704427-08-TX
Washington DOE	http://www.ecy.wa.gov/programs/eap/labs/lab-accreditation.html	C1203
Wisconsin DNR	http://dnr.wi.gov/	998386840
Wyoming (EPA Region 8)	http://www.epa.gov/region8/water/dwhome/wyomingdi.html	-
Kelso Laboratory Website	www.alsglobal.com	NA

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. A complete listing of specific NELAP-certified analytes, can be found in the certification section at www.caslab.com or at the accreditation bodies web site

Please refer to the certification and/or accreditation body's web site if samples are submitted for compliance purposes. The states highlighted above, require the analysis be listed on the state certification if used for compliance purposes and if the method/anlayte is offered by that state.

CHAIN OF CUSTODY														SRŧ	ŧ	13	112	73							
	1317 Sou	ith 13th Ave	e., Kelso, W	A 98626	36).577.7	7222	800	.695.7	7222	360.	636.1	068 (f	ax)		F	PAGE		(_ OF		·	CO	C#	
PROJECT NAME B CT NUMBER PROJECT NUMBER PROJECT NUMBER PROJECT MANAGE PROJECT MANAGE COMPANY NAME COMPANY N						CONTAINERS	emivolatile	olatile O. B270 Banics by GCA.	HUDIOCOLO BOO SIM PAH	as [] arbons (*see belown) ii & Gree [] BIEX[]	1664 HEM DII DI CBS HEM DH 1664 CS	esticides Conce	horopher 814	etals, Total 051 8151	Vanida - Casolie	Hex-Chrom	1800, Cond. 00	0X 002 + 100, 1KN, TOC	Walini AOX 1620	10 xins/Fire Co3 [] 115	13 D 2 ans HCO3 D hisolved C	N 175 CMases CO2	Cinane[] Ethene[]		
SAMIPLE I.D.	DATE	TIME	LAB I.D.	MATRIX	2		/	<u> -</u>	1-0					120	$\int O'$		104	\vdash	7					/	REMARKS
<u>F-1</u>	10/31	9930		GW	2																				
P-2	10/30	1306		GN	2						ļ														
p-3	10/30	1500		GW	2											V									
P-4	19130	1710		GW	2							 	ļ	~											
MW-4	10/31	1455		GW	2																				
MW-5	10/30	1810		GW	2									\bigvee		V									
MW-6	10/31	10:34		GW	2									V		V									
MW-7	0/31	13:40		GW	2									V		V									
I. Routine Report: Blank, Surrogati required	MENTS Method e, as	INVC P.O. # Bill To:	Dice INFOR 13006 Golder	матіол 49	N Circle which metals are to be analyzed: Total Metals: Al As Sb Ba Be B Ca Cd Co Cr Cu Fe Pb Mg Mn Mo Ni K Ag Na Se Sr TI Sn V Zn I Dissolved Metals: Al As Sb Ba Be B 🔗 Cd Co Cr Cu [] Pb () Mo Ni () Dissolved Metals: Al As Sb Ba Be B () Cd Co Cr Cu [] Pb () Mo Ni ()							Sn V Zn Hg Sn V Zn Hg													
II. Report Dup., M	S, MSD as	TURNAR	OUND REG	UIREM	ENTS	SPĘC		NSTR		ONS/C	CAR	IENTS	PHOC S:	EDUI	KE: /	<u>4K (</u>	JA N	/1 N	ЮКІ	HWE	<u>si oi</u>	HEH:			(CIRCLE ONE)
required III. CLP Like Summary (no raw data) ✓IV. Data Validation Report ✓VY. EDD Requested Report Date Requested Report Date III. CLP Like Summary (no raw data) Y 5 day Standard (15 working days) Provide FAX Results III. OLP Requested Report Date Sample Shipment contains USDA regulated soil samples (check box if applicable)																									
THE NOUISHED BY: REC				RECE	IVED	BY;₩	11/13E	Z I				REL	INQU	ISHED	BY:						RE	ECEIV	ED BY	**	
Signature, La Signature, Signature, Solder Signa						- <u>+</u> Da	H (ate/Tin ALS	1/1/ ne	13	0100	Signa	ature	imo		Dat	e/Tim	e		Signature Date/Time			/Time			
Printed Name	Firm		Printe	d Name		J Fi	m			-	Print	ed Na	ime		Firn	n				Printe	ed Nar	ne		Firm	

Cooler Receipt and Preservation Fo	Form
------------------------------------	------

Client / Pr	oject:	Golder	Associ	ates	1		Service	Request K	13	573			
Received:	10/3	1/13	Opened:	ulif	<u>13</u> I	By:	ш	Unloade	:d:	11/1/13	_By:	щ	
1. Sample	es were rece	eived via?	Mail	Fed Ex	UPS	DHL	PDX	Courie	r (Ha	nd Delivered)	' #e-	
2. Sample	es were rece	eived in: (ci	rcle) (Cooler	Box	Envela	pe	Other	· · · · · · · · · · · · · · · · · · ·	an a		NA	
3. Were g	custody seal	<u>s</u> on cooler	s?	NA Y	(N)	If y	es, how n	nany and wh	nere?				
If pres	ent, were ci	istody seals	intact?	Y	N]	lf present,	were they s	signed an	d dated?		Υ	Ν
Raw Cooler Temp	Corrected. Cooler Temp	Raw Temp Blank	Corrected Temp Blank	Corr. Factor	Thermom ID	eter	Cooler/CC	NA		Tracking N	umber	NA	Filed
4.1	4.1	i.5	1.5	0	333			\leq					
4. Packin	g material:	Inserts	Baggies	Bubble Wi	rap Gel Pi	acks ()	Wet Ice	Drv Ice S	Sleeves				
5. Were d	custody pap	ers properly	y filled out	(ink, signed	l, etc.)?			•'			NA	(\mathbf{Y})	 N
6. Did al.	l bottles arri	ive in good	condition (unbroken)?	Indicate in	n the tab	ole below.				NA	Y	N
7. Were a	ll sample la	bels comple	ete (i.e anal	ysis, preser	vation, etc.))?					NA	(\mathbf{Y})	N
8. Did all	sample labo	els and tags	agree with	custody pa	pers? Indic	ate maje	or discrep	ancies in th	e table oi	n page 2.	NA	(\mathbf{Y})	N
9. Were a	appropriate	bottles/con	tainers and	volumes re	ceived for th	he tests i	ndicated?				NA	$\langle \widetilde{Y} \rangle$	N
10. Were	the pH-pres	served bottl	es (see SMC	GEN SOP)	received at	the appr	opriate pH	H? Indicate	in the ta	ble below	NA	(Y)	N
11. Were	VOA vials	received wi	ithout head	space? Indi	icate in the i	table be.	low.				NA	Ý	Ν
12. Was (C12/Res neg	gative?								1	NA	Y	Ν
	Sample ID c	on Bottle			Sample ID or					Identified by:			n n San n San S
										luoninou by			
]
			Bottle	Count O	ut of Head-				Volume	Reagent Lo	ot i i		
	Sample ID)	Bottle	Type T	emp space	Broke	pH F	Reagent	added	Number	in	itials Tin	ne

 Sample ID
 Bottle Type
 Temp
 space
 Broke
 pH
 Reagent
 added
 Number
 Initials
 Time

 Image: Sample ID
 Image: Sample ID

Notes, Discrepancies, & Resolutions:_

PC_JZ

Analytical Report

Client:	Golder Associates, Incorporated
Project:	Port Gamble Upland Loss/1300649
Sample Matrix:	Water
Analysis Method:	300.0

Service Request: K1311873 Date Collected: 10/30/13 - 10/31/13 Date Received: 11/1/13

Units: mg/L Basis: NA

Chloride

Sample Name	Lab Code	Result	MRL	MDL	Dil.	Date Analyzed	0
P-1	K1311873-001	1.12	0.40	0.06	2	11/01/13 10:41	
P-2	K1311873-002	1.12	0.40	0.06	2	11/01/13 09:40	
P-3	K1311873-003	2.25	0.40	0.06	2	11/01/13 09:56	
P-4	K1311873-004	1.80	0.40	0.06	2	11/01/13 10:11	
MW-4	K1311873-005	3.21	0.40	0.06	2	11/01/13 10:57	
MW-5	K1311873-006	7.26	0.40	0.06	2	11/01/13 10:26	
MW-6	K1311873-007	9.66	0.40	0.06	2	11/01/13 11:12	
MW-7	K1311873-008	9.95	0.40	0.06	2	11/01/13 11:28	
Method Blank	K1311873-MB	ND U	0.20	0.03	1	11/01/13 07:17	

QA/QC Report

Client:	Golder Associates, Incorporated	Service Request:	K1311873
Project	Port Gamble Upland Loss/1300649	Date Collected:	10/30/13 - 10/31/13
Sample Matrix:	Water	Date Received:	11/01/13
Analysis Method:	300.0	Units: Basis:	mg/L NA

Duplicate Sample Summary

Chloride

Sample Name:	Lab Code:	MRL	MDL	Sample Result	Duplicate Result	Average	RPD	RPD Limit	Date Analyzed
P-1	K1311873-001DUP	0.40	0.06	1.12	1.13	1.12	<1	20	11/01/13
P-2	K1311873-002DUP	0.40	0.06	1.12	1.12	1.12	<1	20	11/01/13

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed 11/6/2013 9:20:30 AM

Superset Reference:13-0000268069 rev 00

QA/QC Report

Client:	Golder Assoc	ciates, Incorp	orated			Ser	vice Reques	t: Ki	1311873	
Project:	Port Gamble	Upland Loss	/1300649			Dat	e Collected:	: 10	/31/13	
Sample Matrix:	Water					Dat	e Received:	11	/01/13	
						Dat	e Analyzed:	: 11	/1/13	
			Duplicat	e Matrix S	pike Sum	mary				
				Chlori	de					
Sample Name:	P-1						Units	: mg	g/L	
Lab Code:	K1311873-0	01					Basis	: N/	A	
Analysis Method:	300.0									
			Matri	x Spike		Duplicate M	latrix Spike			
			K131187	73-001MS		K1311873	-001DMS			
	Sample		Spike			Spike		% Rec		RPD
Analyte Name	Result	Result	Amount	% Rec	Result	Amount	% Rec	Limits	RPD	Limit

95

4.96

4.00

96

90-110

<1

20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

1.12

4.92

4.00

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Chloride

QA/QC Report

Client:	Golder Assoc	ciates, Incorp	orated			Ser	vice Reques	t: Kl	1311873	
Project:	Port Gamble	Upland Loss	/1300649			Dat	e Collected:	10	/30/13	
Sample Matrix:	Water					Dat	e Received:	11	/01/13	
						Dat	e Analyzed:	11	/1/13	
			Duplicat	e Matrix S	pike Sum	mary				
				Chlori	de					
Sample Name:	P-2						Units	: mį	g/L	
Lab Code:	K1311873-0	02					Basis	: N/	A	
Analysis Method:	300.0									
			Matri	x Spike		Duplicate M	atrix Spike			
			K131187	73-002MS		K1311873	-002DMS			
	Sample		Spike			Spike		% Rec		RPD
Analyte Name	Result	Result	Amount	% Rec	Result	Amount	% Rec	Limits	RPD	Limit

96

4.99

4.00

97

90-110

<1

20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

1.12

4.97

4.00

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Chloride

QA/QC Report

Client:	Golder Associates, Incorporated		Service Re	quest:	K131187	3
Project:	Port Gamble Upland Loss/1300649		Date Analy	zed:	11/01/13	
Sample Matrix:	Water					
	Lab (Control Sample Summary				
		Chloride				
Analysis Method:	300.0		Units:		mg/L	
			Basis :		NA	
			Analysis L	ot:	366226	
			Spike			% Rec
Sample Name	Lab Code	Result	Amount	% Rec		Limits
Lab Control Sample	K1311873-LCS	4.57	5.00	91		90-110

Analytical Report

Client:	Golder Associates, Incorporated
Project:	Port Gamble Upland Loss/1300649
Sample Matrix:	Water
Analysis Method:	300.0

Service Request: K1311873 Date Collected: 10/30/13 - 10/31/13 Date Received: 11/1/13

Units: mg/L Basis: NA

Nitrate as Nitrogen

Sample Name	Lab Code	Result	MRL	MDL	Dil.	Date Analyzed	Q
P-1	K1311873-001	0.13	0.10	0.01	2	11/01/13 10:41	
P-2	K1311873-002	0.07 J	0.10	0.01	2	11/01/13 09:40	
P-3	K1311873-003	2.88	0.10	0.01	2	11/01/13 09:56	
P-4	K1311873-004	0.97	0.10	0.01	2	11/01/13 10:11	
MW-4	K1311873-005	0.03 J	0.10	0.01	2	11/01/13 10:57	
MW-5	K1311873-006	0.04 J	0.10	0.01	2	11/01/13 10:26	
MW-6	K1311873-007	0.04 J	0.10	0.01	2	11/01/13 11:12	
MW-7	K1311873-008	ND U	0.10	0.01	2	11/01/13 11:28	
Method Blank	K1311873-MB	ND U	0.050	0.005	1	11/01/13 07:17	

QA/QC Report

Client:	Golder Associates, Incorporated	Service Request:	K1311873
Project	Port Gamble Upland Loss/1300649	Date Collected:	10/30/13 - 10/31/13
Sample Matrix:	Water	Date Received:	11/01/13
Analysis Method:	300.0	Units: Basis:	mg/L NA

Duplicate Sample Summary

Nitrate as Nitrogen

Sample Name:	Lab Code:	MRL	MDL	Sample Result	Duplicate Result	Average	RPD	RPD Limit	Date Analyzed
P-1	K1311873-001DUP	0.10	0.01	0.13	0.13	0.130	<1	20	11/01/13
P-2	K1311873-002DUP	0.10	0.01	0.07	0.07	0.0683	1	20	11/01/13

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed 11/6/2013 9:20:30 AM

Superset Reference:13-0000268069 rev 00
QA/QC Report

Client:	Golder Associates, Inc.	orporated	Service Request:	K1311873	
Project:	Port Gamble Upland L	oss/1300649	Date Collected:	10/31/13	
Sample Matrix:	Water		Date Received:	11/01/13	
			Date Analyzed:	11/1/13	
		Duplicate Matrix Spike Nitrate as Nitrog	Summary Jen		
Sample Name:	P-1		Units:	mg/L	
Lab Code:	K1311873-001		Basis:	NA	
Analysis Method:	300.0				
		Matrix Snike	Duplicate Matrix Spike		
		K1311873-001MS	K1311873-001DMS		
	Sample	Spike	Spike	% Rec	RPD

% Rec

95

Result

4.01

Amount

4.00

% Rec

97

Limits

90-110

RPD

2

Limit

20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Analyte Name

Nitrate as Nitrogen

Result

0.13

Result

3.93

Amount

4.00

QA/QC Report

	Sample		K131187 Spike	3-002MS		Spike	-002DMS	% Rec		RPD
			Matrix	x Spike		Duplicate M	atrix Spike			
Analysis Method:	300.0									
Lab Code:	K1311873-00)2					Basis	: NA	A	
Sample Name:	P-2						Units	: mg	g/L	
			Duplicat N	e Matrix Sj itrate as N	pike Sum itrogen	mary				
						Dat	e Analyzed:	11	/1/13	
Sample Matrix:	Water					Dat	e Received:	11	/01/13	
Project:	Port Gamble	Upland Loss/	1300649			Dat	e Collected:	10	/30/13	
Client:	Golder Assoc	iates, Incorpo	orated			Serv	vice Reques	t: K1	311873	

97

3.92

4.00

96

90-110

<1

20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Nitrate as Nitrogen

0.07

3.94

4.00

QA/QC Report

Client:	Golder Associates, Incorporated	d	Service Re	quest:	K131187	3
Project:	Port Gamble Upland Loss/1300	0649	Date Analy	zed:	11/01/13	
Sample Matrix:	Water					
		Lab Control Sample Summary				
		Nitrate as Nitrogen				
Analysis Method:	300.0		Units:		mg/L	
			Basis :		NA	
			Analysis L	ot:	366226	
			Spike			% Rec
Sample Name	Lab Code	Result	Amount	% Rec		Limits
Lab Control Sample	K1311873-LCS	15.1	14.5	104		90-110

Analytical Report

Client:	Golder Associates, Incorporated
Project:	Port Gamble Upland Loss/1300649
Sample Matrix:	Water
Analysis Method:	300.0

Service Request: K1311873 Date Collected: 10/30/13 - 10/31/13 Date Received: 11/1/13

Units: mg/L Basis: NA

Sulfate

Sample Name	Lab Code	Result	MRL	MDL	Dil.	Date Analyzed	Q
P-1	K1311873-001	1.31	0.20	0.02	2	11/01/13 10:41	
P-2	K1311873-002	2.27	0.20	0.02	2	11/01/13 09:40	
P-3	K1311873-003	4.79	0.20	0.02	2	11/01/13 09:56	
P-4	K1311873-004	6.23	0.20	0.02	2	11/01/13 10:11	
MW-4	K1311873-005	17.7	0.20	0.02	2	11/01/13 10:57	
MW-5	K1311873-006	5.43	0.20	0.02	2	11/01/13 10:26	
MW-6	K1311873-007	4.60	0.20	0.02	2	11/01/13 11:12	
MW-7	K1311873-008	5.34	0.20	0.02	2	11/01/13 11:28	
Method Blank	K1311873-MB	ND U	0.10	0.01	1	11/01/13 07:17	

QA/QC Report

Client:	Golder Associates, Incorporated	Service Request:	K1311873
Project	Port Gamble Upland Loss/1300649	Date Collected:	10/30/13 - 10/31/13
Sample Matrix:	Water	Date Received:	11/01/13
Analysis Method:	300.0	Units: Basis:	mg/L NA

Duplicate Sample Summary

Sulfate

Sample Name:	Lab Code:	MRL	MDL	Sample Result	Duplicate Result	Average	RPD	RPD Limit	Date Analyzed
P-1	K1311873-001DUP	0.20	0.02	1.31	1.32	1.32	<1	20	11/01/13
P-2	K1311873-002DUP	0.20	0.02	2.27	2.20	2.23	3	20	11/01/13

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Printed 11/6/2013 9:20:30 AM

Superset Reference:13-0000268069 rev 00

QA/QC Report

Client:	Golder Associates, Incorpora	ated	Service Request:	K1311873
Project:	Port Gamble Upland Loss/13	300649	Date Collected:	10/31/13
Sample Matrix:	Water		Date Received:	11/01/13
			Date Analyzed:	11/1/13
		Duplicate Matrix Spike Sumn	nary	
		Sulfate		
Sample Name:	P-1		Units:	mg/L
Lab Code:	K1311873-001		Basis:	NA
Analysis Method:	300.0			
		Matrix Spike K1311873-001MS	Duplicate Matrix Spike K1311873-001DMS	

	Sample		Spike			Spike		% Rec		RPD
Analyte Name	Result	Result	Amount	% Rec	Result	Amount	% Rec	Limits	RPD	Limit
Sulfate	1.31	5.47	4.00	104	5.52	4.00	105	90-110	<1	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

QA/QC Report

Client:	Golder Assoc	ciates, Incorp	orated			Ser	vice Reques	t: Kl	311873	
Project:	Port Gamble	Upland Loss	/1300649			Dat	e Collected:	10	/30/13	
Sample Matrix:	Water					Dat	e Received:	11	/01/13	
						Dat	e Analyzed:	11	/1/13	
			Duplicat	e Matrix S	pike Sum	mary				
				Sulfat	e					
Sample Name:	P-2						Units	: mį	g/L	
Lab Code:	K1311873-0	02					Basis:	: NA	4	
Analysis Method:	300.0									
			Matri	x Snike		Dunlicate M	atrix Snike			
			K131187	3-002MS		K1311873	-002DMS			
	Sample		Spike			Spike		% Rec		RPD
Analyte Name	Result	Result	Amount	% Rec	Result	Amount	% Rec	Limits	RPD	Limit

106

6.52

4.00

106

90-110

<1

20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

2.27

6.49

4.00

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Sulfate

QA/QC Report

Client:	Golder Associates, Incorporated		Service Req	uest:	K131187	3
Project:	Port Gamble Upland Loss/1300649		Date Analyz	zed:	11/01/13	
Sample Matrix:	Water					
	Lab C	Control Sample Summary				
		Sulfate				
Analysis Method:	300.0		Units:		mg/L	
			Basis:		NA	
			Analysis Lo	t:	366226	
			Spike			% Rec
Sample Name	Lab Code	Result	Amount	% Rec		Limits
Lab Control Sample	K1311873-LCS	4.76	5.00	95		90-110

Analytical Report

Client:	Golder Associates, Incorporated
Project:	Port Gamble Upland Loss/1300649
Sample Matrix:	Water
Analysis Method:	SM 2510 B

Service Request: K1311873 Date Collected: 10/30/13 - 10/31/13 Date Received: 11/1/13 Units: uMHOS/cm Basis: NA

Conductivity at 25 Degrees Celsius

Sample Name	Lab Code	Result	MRL	MDL	Dil.	Date Analyzed	Q
P-1	K1311873-001	156	2.0	0.4	1	11/05/13 13:50	
P-2	K1311873-002	70.7	2.0	0.4	1	11/05/13 13:50	
P-3	K1311873-003	129	2.0	0.4	1	11/05/13 13:50	
P-4	K1311873-004	99.7	2.0	0.4	1	11/05/13 13:50	
MW-4	K1311873-005	222	2.0	0.4	1	11/05/13 13:50	
MW-5	K1311873-006	297	2.0	0.4	1	11/05/13 13:50	
MW-6	K1311873-007	331	2.0	0.4	1	11/05/13 13:50	
MW-7	K1311873-008	360	2.0	0.4	1	11/05/13 13:50	
Method Blank	K1311873-MB	1.0 J	2.0	0.4	1	11/05/13 13:50	

QA/QC Report

Client:	Golder Associate	older Associates, Incorporated				Serv	vice Request:	K131187	73
Project	Port Gamble Upl	and Loss/1300	649			Da	te Collected:	NA	
Sample Matrix:	Water					Da	ate Received:	NA	
						Da	te Analyzed:	11/05/13	i i
			Replicate	Sample St	ımmary				
		G	eneral Ch	emistry P	arameters				
Sample Name:	Batch QC						Units:	uMHOS	S/cm
Lab Code:	K1311973-001						Basis:	NA	
		Analysis Mathad	MDI	MDI	Sample	Duplicate Sample K1311973- 001DUP	A	DDD	DDD I ::::4
Analyte Name	as Calcius	SM 2510 D	<u>MRL</u>		Result 26.1	Result	Average	$\frac{\mathbf{RPD}}{1}$	20
Conductivity at 25 Degre	es Celsius	SIVI 2310 D	2.0	0.4	30.1	50.2	30.1	~1	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

QA/QC Report

Client: Project: Sample Matrix:	Golder Associ Port Gamble U Water	ates, Incorporated Jpland Loss/130064	9	Service Ro Date Anal	equest: yzed:	K1311873 11/05/13	3
		La Conc	b Control Sample Summary luctivity at 25 Degrees Celsius				
Analysis Method:	SM 2510 B			Units: Basis: Analysis I	Lot:	uMHOS/c NA 366830	cm
Sample Name Lab Control Sample		Lab Code K1311873-LCS	Result 334	Spike Amount 330	% Rec		% Rec Limits 86-113

- Cover Page -INORGANIC ANALYSIS DATA PACKAGE

Client:Golder Associates, IncorporatedProject Name:Port Gamble Upland LossProject No.:1300649

Sample Name: Lab Code: P-1 K1311873-001DISS P-1D K1311873-001DISSD K1311873-001DISSS **P-1S P-2** K1311873-002DISS **P-3** K1311873-003DISS **P-4** K1311873-004DISS MW-4 K1311873-005DISS MW-5 K1311873-006DISS MW-6 K1311873-007DISS MW-7 K1311873-008DISS **Method Blank** K1311873-MB

Comments:

Service Request: K1311873

Client:	Golder Associates,	Incorporated	Service Request:	K1311873
Project No.:	1300649		Date Collected:	10/31/13
Project Name:	Port Gamble Upland	Loss	Date Received:	11/01/13
Matrix:	WATER		Units:	ug/L
			Basis:	NA

Sample Name: P-1

Lab Code: K1311873-001DISS

Analyte	Analysis Method	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Calcium	6010C	20.0	0.9	1.0	11/02/13	11/04/13	15700		
Iron	6010C	20.0	3.0	1.0	11/02/13	11/04/13	37.3		
Magnesium	6010C	5.0	0.3	1.0	11/02/13	11/04/13	5620		
Manganese	6010C	1.00	0.07	1.0	11/02/13	11/04/13	39.8		
Potassium	6010C	200	60.0	1.0	11/02/13	11/04/13	2770		
Sodium	6010C	200	20.0	1.0	11/02/13	11/04/13	8790		

Client:	Golder Associates, Incorporat	ed Service Request:	K1311873
Project No.:	1300649	Date Collected:	10/30/13
Project Name:	Port Gamble Upland Loss	Date Received:	11/01/13
Matrix:	WATER	Units:	ug/L
		Basis:	NA

Sample Name: P-2

Lab Code: K1311873-002DISS

Analyte	Analysis Method	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Calcium	6010C	20.0	0.9	1.0	11/02/13	11/04/13	5190		
Iron	6010C	20.0	3.0	1.0	11/02/13	11/04/13	106		
Magnesium	6010C	5.0	0.3	1.0	11/02/13	11/04/13	3260		
Manganese	6010C	1.00	0.07	1.0	11/02/13	11/04/13	10.5		
Potassium	6010C	200	60.0	1.0	11/02/13	11/04/13	657		
Sodium	6010C	200	20.0	1.0	11/02/13	11/04/13	4610		

Client:	Golder Associates,	Incorporated	Service Request:	K1311873
Project No.:	1300649		Date Collected:	10/30/13
Project Name:	Port Gamble Upland	Loss	Date Received:	11/01/13
Matrix:	WATER		Units:	ug/L
			Basis:	NA

Sample Name: P-3

Lab Code: K1311873-003DISS

Analyte	Analysis Method	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	с	Q
Calcium	6010C	20.0	0.9	1.0	11/02/13	11/04/13	7510		
Iron	6010C	20.0	3.0	1.0	11/02/13	11/04/13	155		
Magnesium	6010C	5.0	0.3	1.0	11/02/13	11/04/13	6030		
Manganese	6010C	1.00	0.07	1.0	11/02/13	11/04/13	3.20		
Potassium	6010C	200	60.0	1.0	11/02/13	11/04/13	831		
Sodium	6010C	200	20.0	1.0	11/02/13	11/04/13	6100		

Client:	Golder Associates,	Incorporated	Service Request:	K1311873
Project No.:	1300649		Date Collected:	10/30/13
Project Name:	Port Gamble Upland	Loss	Date Received:	11/01/13
Matrix:	WATER		Units:	ug/L
			Basis:	NA

Sample Name: P-4

Lab Code: K1311873-004DISS

Analyte	Analysis Method	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	с	Q
Calcium	6010C	20.0	0.9	1.0	11/02/13	11/04/13	5880		
Iron	6010C	20.0	3.0	1.0	11/02/13	11/04/13	519		
Magnesium	6010C	5.0	0.3	1.0	11/02/13	11/04/13	3450		
Manganese	6010C	1.00	0.07	1.0	11/02/13	11/04/13	8.40		
Potassium	6010C	200	60.0	1.0	11/02/13	11/04/13	1170		
Sodium	6010C	200	20.0	1.0	11/02/13	11/04/13	7650		

Client:	Golder Associates,	Incorporated	Service Request:	K1311873
Project No.:	1300649		Date Collected:	10/31/13
Project Name:	Port Gamble Upland	Loss	Date Received:	11/01/13
Matrix:	WATER		Units:	ug/L
			Basis:	NA

Sample Name: MW-4

Lab Code: K1311873-005DISS

Analyte	Analysis Method	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	с	Q
Calcium	6010C	20.0	0.9	1.0	11/02/13	11/04/13	12800		
Iron	6010C	20.0	3.0	1.0	11/02/13	11/04/13	299		
Magnesium	6010C	5.0	0.3	1.0	11/02/13	11/04/13	5590		
Manganese	6010C	1.00	0.07	1.0	11/02/13	11/04/13	72.6		
Potassium	6010C	200	60.0	1.0	11/02/13	11/04/13	1900		
Sodium	6010C	200	20.0	1.0	11/02/13	11/04/13	24000		

Client:	Golder Associates,	Incorporated	Service Request:	K1311873
Project No.:	1300649		Date Collected:	10/30/13
Project Name:	Port Gamble Upland	Loss	Date Received:	11/01/13
Matrix:	WATER		Units:	ug/L
			Basis:	NA

Sample Name: MW-5

Lab Code: K1311873-006DISS

Analyte	Analysis Method	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Calcium	6010C	20.0	0.9	1.0	11/02/13	11/04/13	11000		
Iron	6010C	20.0	3.0	1.0	11/02/13	11/04/13	396		
Magnesium	6010C	5.0	0.3	1.0	11/02/13	11/04/13	3740		
Manganese	6010C	1.00	0.07	1.0	11/02/13	11/04/13	87.1		
Potassium	6010C	200	60.0	1.0	11/02/13	11/04/13	2020		
Sodium	6010C	200	20.0	1.0	11/02/13	11/04/13	45600		

Client:	Golder Associates,	Incorporated	Service Request:	K1311873
Project No.:	1300649		Date Collected:	10/31/13
Project Name:	Port Gamble Upland	Loss	Date Received:	11/01/13
Matrix:	WATER		Units:	ug/L
			Basis:	NA

Sample Name: MW-6

Lab Code: K1311873-007DISS

Analyte	Analysis Method	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	с	Q
Calcium	6010C	20.0	0.9	1.0	11/02/13	11/04/13	11400		
Iron	6010C	20.0	3.0	1.0	11/02/13	11/04/13	139		
Magnesium	6010C	5.0	0.3	1.0	11/02/13	11/04/13	3180		
Manganese	6010C	1.00	0.07	1.0	11/02/13	11/04/13	58.6		
Potassium	6010C	200	60.0	1.0	11/02/13	11/04/13	2310		
Sodium	6010C	200	20.0	1.0	11/02/13	11/04/13	59700		

Client:	Golder Associates,	Incorporated	Service Request:	K1311873
Project No.:	1300649		Date Collected:	10/31/13
Project Name:	Port Gamble Upland	Loss	Date Received:	11/01/13
Matrix:	WATER		Units:	ug/L
			Basis:	NA

Sample Name: MW-7

Lab Code: K1311873-008DISS

Analyte	Analysis Method	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Calcium	6010C	20.0	0.9	1.0	11/02/13	11/04/13	12800		
Iron	6010C	20.0	3.0	1.0	11/02/13	11/04/13	31900		
Magnesium	6010C	5.0	0.3	1.0	11/02/13	11/04/13	12300		
Manganese	6010C	1.00	0.07	1.0	11/02/13	11/04/13	601		
Potassium	6010C	200	60.0	1.0	11/02/13	11/04/13	4150		
Sodium	6010C	200	20.0	1.0	11/02/13	11/04/13	85800		

Client:	Golder Associates,	Incorporated	Service Request:	K1311873
Project No.:	1300649		Date Collected:	
Project Name:	Port Gamble Upland	Loss	Date Received:	
Matrix:	WATER		Units:	ug/L
			Basis:	NA

Sample Name: Method Blank

Lab Code: K1311873-MB

Analyte	Analysis Method	MRL	MDL	Dilution Factor	Date Extracted	Date Analyzed	Result	С	Q
Calcium	6010C	20.0	0.9	1.0	11/02/13	11/04/13	0.9	υ	
Iron	6010C	20.0	3.0	1.0	11/02/13	11/04/13	3.0	υ	
Magnesium	6010C	5.0	0.3	1.0	11/02/13	11/04/13	0.3	υ	
Manganese	6010C	1.00	0.07	1.0	11/02/13	11/04/13	0.07	υ	
Potassium	6010C	200	60.0	1.0	11/02/13	11/04/13	60.0	υ	
Sodium	6010C	200	20.0	1.0	11/02/13	11/04/13	20.0	υ	

Metals - 5A -SPIKE SAMPLE RECOVERY

Client:	Golder	Associates,	Incorporated	Service Request:	K1311873
---------	--------	-------------	--------------	------------------	----------

Project No.: 1300649

Project Name: Port Gamble Upland Loss

Matrix: WATER

Sample Name: P-1S

Lab Code: K1311873-001DISSS

UG/L

NA

Units:

Basis:

Analyte	Control	Spike	С	Sample Result C	Spike Added	8-D	Q	Method
Calcium	75 - 125	25500	_	15700	10000.00	%R 98.0		6010C
Iron	75 - 125	1030		37.3	1000.00	99.3		6010C
Magnesium	75 - 125	16400	ĺ	5620	10000.00	107.8		6010C
Manganese	75 - 125	518	ĺ	39.8	500.00	95.6		6010C
Potassium	75 - 125	12900	ĺ	2770	10000.00	101.3		6010C
Sodium	75 - 125	19200	ĺ	8790	10000.00	104.1		6010C

Metals

- 6 -

DUPLICATES

Client:	Golder Associates, Incorporated	Service Request:	K1311873
Project No.:	1300649	Units:	UG/L
Project Name:	Port Gamble Upland Loss	Basis:	NA
Matrix:	WATER		

Sample Name: P	-1D
----------------	-----

Lab Code: K1311873-001DISSD

Analyte	Control Limit	Sample (S)	С	Duplicate (D)	С	RPD	Q	Method
Calcium	20	15700		15900		1.3		6010C
Iron		37.3		38.6		3.4		6010C
Magnesium	20	5620		5660		0.7		6010C
Manganese	20	39.8		40.3		1.2		6010C
Potassium	20	2770		2810		1.4		6010C
Sodium	20	8790		8980		2.1		6010C

An empty field in the Control Limit column indicates the control limit is not applicable.

Metals - 7 -LABORATORY CONTROL SAMPLE

Client: Golder Associates, Incorporated

Service Request: K1311873

Project No.: 1300649

Project Name: Port Gamble Upland Loss

Aqueous LCS Source: Inorganic Ventures Solid LCS Source:

	Aqueous	s (ug/L)			Soli	d (mg/	· /kg)	
Analyte	True	Found	%R	True	Found	С	Limits	۶R
Calcium	12500	12300	98.4					
Iron	2500	2430	97.2					
Magnesium	12500	12500	100.0					
Manganese	1250	1210	96.8					
Potassium	12500	12100	96.8					
Sodium	12500	12600	100.8					

November 13, 2013

Analytical Report for Service Request No: K1312215

Jonathan Gerst, M.Sc Golder Associates, Incorporated 9 Monroe Parkway, Suite 270 Lake Oswego, OR 97035

RE: Port Gamble Upland Loss/1300649

Dear Jonathan:

Enclosed are the results of the samples submitted to our laboratory on November 01, 2013. For your reference, these analyses have been assigned our service request number K1312215.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at <u>www.alsglobal.com</u>. All results are intended to be considered in their entirety, and ALS Group USA Corp. dba ALS Environmental (ALS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please call if you have any questions. My extension is 3364. You may also contact me via Email at Howard.Holmes@alsglobal.com.

Respectfully submitted,

ALS Group USA Corp. dba ALS Environmental

Howard Holmes Project Manager

HH/mj

Page 1 of _____

ADDRESS 1317 S. 13th Avenue, Kelso, WA 98626 USA | PHONE +1 360 577 7222 | FAX +1 360 636 1068 ALS Group USA, Corp. Part of the ALS Group An ALS Limited Company

Environmental 💭

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

Acronyms

ASTM	American Society for Testing and Materials
A2LA	American Association for Laboratory Accreditation
CARB	California Air Resources Board
CAS Number	Chemical Abstract Service registry Number
CFC	Chlorofluorocarbon
CFU	Colony-Forming Unit
DEC	Department of Environmental Conservation
DEQ	Department of Environmental Quality
DHS	Department of Health Services
DOE	Department of Ecology
DOH	Department of Health
EPA	U. S. Environmental Protection Agency
ELAP	Environmental Laboratory Accreditation Program
GC	Gas Chromatography
GC/MS	Gas Chromatography/Mass Spectrometry
LOD	Limit of Detection
LOQ	Limit of Quantitation
LUFT	Leaking Underground Fuel Tank
Μ	Modified
MCL	Maximum Contaminant Level is the highest permissible concentration of a substance
	allowed in drinking water as established by the USEPA.
MDL	Method Detection Limit
MPN	Most Probable Number
MRL	Method Reporting Limit
NA	Not Applicable
NC	Not Calculated
NCASI	National Council of the Paper Industry for Air and Stream Improvement
ND	Not Detected
NIOSH	National Institute for Occupational Safety and Health
PQL	Practical Quantitation Limit
RCRA	Resource Conservation and Recovery Act
SIM	Selected Ion Monitoring
TPH	Total Petroleum Hydrocarbons
tr	Trace level is the concentration of an analyte that is less than the PQL but greater
	than or equal to the MDL.

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated value.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.2 definition : Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.
- H The holding time for this test is immediately following sample collection. The samples were analyzed as soon as possible after receipt by the laboratory.

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- J The result is an estimated value.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- DOD-QSM 4.2 definition : Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- $i \,$ $\,$ The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.
- Q See case narrative. One or more quality control criteria was outside the limits.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimated value.
- J The result is an estimated value.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
 DOD-QSM 4.2 definition : Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a chromatographic interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.

Additional Petroleum Hydrocarbon Specific Qualifiers

- ${f F}$ The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

ALS Group USA Corp. dba ALS Environmental (ALS) - Kelso State Certifications, Accreditations, and Licenses

Agency	Web Site	Number
Alaska DEC UST	http://dec.alaska.gov/applications/eh/ehllabreports/USTLabs.aspx	UST-040
Arizona DHS	http://www.azdhs.gov/lab/license/env.htm	AZ0339
Arkansas - DEQ	http://www.adeq.state.ar.us/techsvs/labcert.htm	88-0637
California DHS (ELAP)	http://www.cdph.ca.gov/certlic/labs/Pages/ELAP.aspx	2286
DOD ELAP	http://www.denix.osd.mil/edqw/Accreditation/AccreditedLabs.cfm	L12-28
Florida DOH	http://www.doh.state.fl.us/lab/EnvLabCert/WaterCert.htm	E87412
Georgia DNR	http://www.gaepd.org/Documents/techguide_pcb.html#cel	881
Hawaii DOH	Not available	-
Idaho DHW	http://www.healthandwelfare.idaho.gov/Health/Labs/CertificationDrinkingWaterLabs/tabid/1833/Default_aspx	-
Indiana DOH	http://www.in.gov/isdh/24859.htm	C-WA-01
ISO 17025	http://www.pjlabs.com/	L12-27
Louisiana DEQ	http://www.deq.louisiana.gov/portal/DIVISIONS/PublicParticipationandPer mitSupport/LouisianaLaboratoryAccreditationProgram.aspx	3016
Maine DHS	Not available	WA0035
Michigan DEQ	http://www.michigan.gov/deq/0,1607,7-135-3307_4131_4156,00.html	9949
Minnesota DOH	http://www.health.state.mn.us/accreditation	053-999-368
Montana DPHHS	http://www.dphhs.mt.gov/publichealth/	CERT0047
Nevada DEP	http://ndep.nv.gov/bsdw/labservice.htm	WA35
New Jersey DEP	http://www.nj.gov/dep/oqa/	WA005
North Carolina DWQ	http://www.dwqlab.org/	605
Oklahoma DEQ	http://www.deq.state.ok.us/CSDnew/labcert.htm	9801
Oregon – DEQ (NELAP)	http://public.health.oregon.gov/LaboratoryServices/EnvironmentalLaborator yAccreditation/Pages/index.aspx	WA200001
South Carolina DHEC	http://www.scdhec.gov/environment/envserv/	61002
Texas CEQ	http://www.tceq.texas.gov/field/qa/env_lab_accreditation.html	704427-08-TX
Washington DOE	http://www.ecy.wa.gov/programs/eap/labs/lab-accreditation.html	C1203
Wisconsin DNR	http://dnr.wi.gov/	998386840
Wyoming (EPA Region 8)	http://www.epa.gov/region8/water/dwhome/wyomingdi.html	-
Kelso Laboratory Website	www.alsglobal.com	NA

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. A complete listing of specific NELAP-certified analytes, can be found in the certification section at www.caslab.com or at the accreditation bodies web site

Please refer to the certification and/or accreditation body's web site if samples are submitted for compliance purposes. The states highlighted above, require the analysis be listed on the state certification if used for compliance purposes and if the method/anlayte is offered by that state.

ALS ENVIRONMENTAL

Client:Golder Associates, IncorporatedProject:Port Gamble Upland Loss/1300649Sample Matrix:Water

 Service Request No.:
 K1312215

 Date Received:
 11/01/13

Case Narrative

All analyses were performed consistent with the quality assurance program of ALS Environmental. This report contains analytical results for samples designated for Tier II data deliverables. When appropriate to the method, method blank results have been reported with each analytical test. Additional quality control analyses reported herein include: Laboratory Duplicate (DUP), Matrix Spike (MS), and Laboratory Control Sample (LCS).

Sample Receipt

Eight water samples were received for analysis at ALS Environmental on 11/01/13. The samples were received in good condition and consistent with the accompanying chain of custody form. The samples were stored in a refrigerator at 4°C upon receipt at the laboratory.

General Chemistry Parameters

Ammonia as Nitrogen by Standard Method 4500-NH3 E:

The Relative Percent Difference (RPD) criterion for the replicate analysis in sample P-1 was not applicable because the analyte concentration was not significantly greater than the Method Reporting Limit (MRL). Analytical values derived from measurements close to the detection limit are not subject to the same accuracy and precision criteria as results derived from measurements higher on the calibration range for the method.

Sample notes

Samples preserved with nitric acid instead of sulfuric acid were analyzed for ammonia with no apparent adverse affects.

No other anomalies associated with the analysis of these samples were observed.

								HAIN OF CUSTODY						K	13	12	Z	15	SR	#	13	HE	75		
(Aca) Enonomic	1317 Soi	uth 13th Av	e , Kelso. W	A 98626	5 36	0.577.	7222	800	.695-7	222	360	636.1	068 (f	fax)		F	PAGE		1	OF	[coc)#	\sim
BRUJECT HAME Bort Gumble Boog649	Uplan.	1 1055	>				\square	/	CHAL	EX-	7		7	510	7	7		6/	/	000	101	Τ	Ethene	A.	3
Charis Pitre						<u>v</u>	, /	18		2 Z	n			10					7 /	\tilde{a}	ි/ි				
Golder Assac	idtes						/	12		Delo	7/891 1991	1	ers .		J.	Jon J	6		202 1950		£ /	184		72	
Trystate / IP	ing st	<u>e 2 N</u> 0				T N	/ /	anics 8270	80.	See	E	- ouc	510es 812	819		10	B a	10.2	13	108	/	100	2	1	
E MAIL ADDRESS	ieersi	For vol	ter io	m	/	04			010s	iesel		Ĭ		olics a []		' Ĭ	200	ن ق چ کے ا			Sol D	lases tethai	S		
503-307-177		FAX			7	0 T	latile			ease a	I FE	Desi	808 24		t bei		E S		$\frac{1}{2}$.		60 08 %		S.	-/	
ALT ATT	4				7 MBNI	5/	A LAN	latile		102				etals,	an _{on}		e e		alm.		SSOL		¥ 6	/	
SAMIPLE I.D.	DATE	TIME	LAB I.D.	MATRIX	<u> 1 </u>	<u> </u>	/ ° °	/27	1-3	/ð		12.8	10,5	12 3		/ Ale	100	$\int_{-\infty}^{\infty}$	/ ₹	10 %	10 2	1	//		REMARKS
P-1	10/31	0930		GW	2									1								X			
P-2	10/30	1306		61	2									4		1						X			
P-3	10/30	1500		GW	2									V		12						X			
P-4	19/30	1710		GW	2									~		4						X			
MW-4	10/21	1455		Gir	2									~		~						X			
MW-5	10/30	1810		Gir	2.									\checkmark		1						×			an an dan dar da da bahat di kara an
MIN-6	10/31	10:34		(sin)	2									V		~						V			
MN-7	19/7:	12:40		(TIN	2									V		V						\mathcal{T}			
	(3)	<u> </u>		<u> </u>	<u> </u>									-											
		INVC		MATION		Circla						l		1	l]		l				L	I	
REPORT REQUIRE	MENTS	P.O. #	13006	19		Tota	(Mantak	ietais.	Ac S	ng antan In Do	yzęu. Ro	0 0-	Cd	Ca. (N 00	En	DK 14	a Ma	Mo	6 C	14 A.A.	Ní~ á		τι (20 V 70 MR
I. Routine Report Blank, Surroga	: Method te. as	Bill To:	Golder			Discalu	n Metars		na s	ю	00	0 0a	00	00 0		10 200	-D M	g wa	- MG	NI NI	n ng Dar		ତ୍ର କ	тı,	20 V 20 09
required						*15501		STA			~ \ De					<u>(7</u>							Se St		
II. Report Dup., M	IS. MSD as	TURNAR	OUND REQ	UIREME	INTS	SPEC	TAL IN	ISTRU		NS/C	OMM	ENTS		2001		<u></u>	<u></u>	1 14	Onn	1	1	1	,		(OINCLE ONE)
required		24 h	۱ r ,	48 hr		Ar	nali	17	e.	0PI		Ċ	ori	æ5	bqi	رجك	re	5	/	H	l	Hal	me	5	
(no raw data)	nary	5 da	w 3 is	bette	2/	•)-		101				1			00		1	• (-		-		
V IV. Data Validation	Report	Star	idard (15 work	ung days Its	5)																				
🖌 V. EDD																									:
NI A		Rec	quested Repo	rt Date		Sa	Imple	Ship	ment	conta	ins L	ISDA	regul	ated	soil sa	ample	es (che	eck b	ox if	applic	cable)		to an its state at the		
Af HELINOI	лізнер ву: /		\sim	··	RECE						SHED	ED BY: RECEIVED BY			DBY	•									
Signaturey Sonaturan (sers)	ignaturey Jack Date Time Signature				ned.	_ 10/ /////3 0104 Date/Time Signature Da				Date	e/Time	9			Signa	ture			Date	/Time					
Printed Name	Firm		Printed	Name) Fir	m				Printe	d Nar	ne		Firm	1				Printe	d Narr	е		Firm	

Copyright 2012 by ALS Group

AL	5)			Cooler	Receipt and	Preservation For	n K1312	PC 1-12 ZI 5	
Client / Pro	oject: C	rolder	Associo	tes		Service Request	K13 1 573	energy sector contracts and the sector of th	
Received:	10/3	1/13_	Opened:	_u/./	<u>/3</u> By:	<u> </u>	ded: <u>l[[]]</u>	By: <u>111</u>	an a
 Sample Sample Were <u>c</u> If prese 	s were rece s were rece ustody seal ent, were cu	tived via? Eived in: (ci <u>s</u> on cooler Istody seals	Mail rcle) (s? intact?	Fed Ex Cooler NA Y Y	UPS D $Box Env$ N N	HL PDX Counter welope Other If yes, how many and If present, were the	rier (Hand Delivered where?y signed and dated?	<i>NA</i> Y	N
Raw Cooler Temp	Corrected. Cooler Temp	Raw Temp Blank	Co rre cted Temp Blank	Corr. Factor	Thermometer ID	Cooler/COC ID	Tracking N	umber	Filed
4.1	4.1	i.5	1.5	0	333				1

4. Packing material: Inserts Baggies Bubble Wrap Gel Packs (Wet Ide) Dry Ice Sleeves

5.	Were	custody	papers	properly	filled or	ut (ink,	signed.	etc.)?
----	------	---------	--------	----------	-----------	----------	---------	--------

6.	Did all bottles	arrive in g	200d condition	(unbroken)?	Indicate in the table below.
~ *				(

7.	Were all	sample	labels	complete	(i.e a	analysis,	preservation.	etc.)?
----	----------	--------	--------	----------	--------	-----------	---------------	--------

C)	Did all assessed a fate to an discuss	a many a strictly and a start		the distance of the second	At a second second second second	
ð. –	Did all sample labels and tags	agree with custody	papers : 1	naicate major-	aiscrepancies in tr	ie iapie on page 2. –

9. Were appropriate bottles/containers and volumes received for the tests indicated?

10. Were the pH-preserved bottles (see SMO GEN SOP) received at the appropriate pH? Indicate in the table below

11. Were VOA vials received without headspace? Indicate in the table below.

12. Was C12/Res negative?

Sample ID on Bottle	Sample ID on COC	Identified by:

Sample ID	Bottle Count Bottle Type	Out of Temp	Head- space	Broke	рН	Reagent	Volume added	Reagent Lot Number	Initials	Time
										a ada da ang gang 1785.00 a kati na
										· · · · · · · · · · · · · · · · · · ·
					<u>C</u> L	ADT L		THAC		
	• · · · · · · · · · · · · · · · · · · ·				ЭП		Vbt	/ ! ! !!!! !		

Notes, Discrepancies, & Resolutions:_____

NA

NA

NA

NA

NA

NA

NA

Ŷ

Ý

Y

Y

Ν

N

N

N

Ν

Ν

N

Ν

Analytical Report

Client:	Golder Associates, Incorporated
Project:	Port Gamble Upland Loss/1300649
Sample Matrix:	Water
Analysis Method:	SM 4500-NH3 E
Prep Method:	SM 4500-NH3B

Service Request: K1312215 **Date Collected:** 10/31/13 **Date Received:** 11/1/13

Units: mg/L Basis: NA

Ammonia as Nitrogen

Samnle Name	Lah Code	Result	MRL	MDL	ы	Date Analyzed	Date Extracted	0
		Keşun		MDL	D11.	2 mary 2cu	Extracted	<u>v</u>
P-1	K1312215-001	0.143	0.063	-	1.25	11/11/13 12:30	11/11/13	
P-2	K1312215-002	0.086	0.063	-	1.25	11/11/13 12:30	11/11/13	
P-3	K1312215-003	0.076	0.063	-	1.25	11/11/13 12:30	11/11/13	
P-4	K1312215-004	0.069	0.063	-	1.25	11/11/13 12:30	11/11/13	
MW-4	K1312215-005	0.105	0.063	-	1.25	11/11/13 12:30	11/11/13	
MW-5	K1312215-006	0.196	0.063	-	1.25	11/11/13 12:30	11/11/13	
MW-6	K1312215-007	0.181	0.063	-	1.25	11/11/13 12:30	11/11/13	
MW-7	K1312215-008	0.085	0.063	-	1.25	11/11/13 12:30	11/11/13	
Method Blank	K1312215-MB	ND U	0.063	-	1.25	11/11/13 12:30	11/11/13	

QA/QC Report

Client:	Golder Associates, Incorp	orated				Service Request:	K131221	15
Project	Port Gamble Upland Loss	/1300649				Date Collected:	10/31/13	
Sample Matrix:	Water					Date Received:	11/01/13	
						Date Analyzed:	11/11/13	
		Rep	licate Samp	le Summary				
		Gener	al Chemist	ry Parameter	rs			
Sample Name:	P-1					Units:	mg/L	
Lab Code:	K1312215-001					Basis:	NA	
	An abaia Mathad	MDI	MDI	Sample	Duplicate Sample K1312215- 001DUP			
Analyte Name	Analysis Method	MRL	MDL	Result	Result	Average	RPD	RPD Limit
Ammonia as Nitrogen	SM 4500-NH3 E	0.063	-	0.143	0.201	0.172	34 *	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

QA/QC Report

Client:	Golder Associates	, Incorpora	ited			Servi	ce Request	: K13	312215	
Project:	Port Gamble Upland Loss/1300649					Date	Collected:	10/3	31/13	
Sample Matrix:	Water					Date	Received:	11/0	01/13	
						Date	Analyzed:	11/1	1/13	
						Date	Extracted:	11/1	1/13	
			Duplicate N	Matrix Spi	ke Summ	ary				
			Amm	ionia as Ni	itrogen					
Sample Name:	P-1						Units:	mg/	L	
Lab Code:	K1312215-001						Basis:	NA		
Analysis Method:	SM 4500-NH3 E									
Prep Method:	SM 4500-NH3B									
			Matrix S K1312215-	pike 001MS		Duplicate Ma K1312215-0	trix Spike 001DMS			
	Sample		Spike			Spike		% Rec		RPD
Analyte Name	Result	Result	Amount	% Rec	Result	Amount	% Rec	Limits	RPD	Limit
Ammonia as Nitrogen	0.143	10.9	10.0	108	11.0	10.0	108	75-125	<1	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

QA/QC Report

Client:	Golder Associates, Incorporated		Service Rec	quest:	K131221	5
Project:	Port Gamble Upland Loss/1300649		Date Analy	zed:	11/11/13	
Sample Matrix:	Water		Date Extra	cted:	11/11/13	
	Lab Co	ontrol Sample Summary				
	An	mmonia as Nitrogen				
Analysis Method:	SM 4500-NH3 E		Units:		mg/L	
Prep Method:	SM 4500-NH3B		Basis:		NA	
			Analysis Lo	ot:	367821	
			Spike			% Rec
Sample Name	Lab Code	Result	Amount	% Rec		Limits
Lab Control Sample	K1312215-LCS	10.0	9.56	105		85-115

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

December 10, 2013

Chris Pitre Golder Associates Inc. 18300 NE Union Hill Road Suite 200 Redmond, WA 98052-3333

Re: Analytical Data for Project 1300649-007 Laboratory Reference No. 1311-222

Dear Chris:

Enclosed are the analytical results and associated quality control data for samples submitted on November 27, 2013.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures
Case Narrative

Samples were collected on November 26, 2013 and received by the laboratory on November 27, 2013. They were maintained at the laboratory at a temperature of 2° C to 6° C.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

DISSOLVED METALS EPA 6010C

Matrix:	Water
Units:	ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lab ID:	11-222-01					
Client ID:	Pitman Well					
Calcium	12000	1100	6010C		12-2-13	
Iron	ND	56	6010C		12-2-13	
Magnesium	12000	1100	6010C		12-2-13	
Manganese	23	11	6010C		12-2-13	
Potassium	1700	1100	6010C		12-2-13	
Sodium	5200	1100	6010C		12-2-13	

DISSOLVED METALS EPA 6010C METHOD BLANK QUALITY CONTROL

Date Analyzed:	12-2-13
Matrix: Units:	Water ug/L (ppb)

Lab ID: MB1202D1

Analyte	Method	Result	PQL
Calcium	6010C	ND	1100
Iron	6010C	ND	56
Magnesium	6010C	ND	1100
Manganese	6010C	ND	11
Potassium	6010C	ND	1100
Sodium	6010C	ND	1100

DISSOLVED METALS EPA 6010C DUPLICATE QUALITY CONTROL

Date Analyzed:	12-2-13
----------------	---------

Matrix:	Water
Units:	ug/L (ppb)

Lab ID: 11-200-01

	Sample	Duplicate			
Analyte	Result	Result	RPD	PQL	Flags
Calcium	25900.0	25900	0	1100	
Iron	ND	ND	NA	56	
Magnesium	11000.0	11000	0	1100	
Manganese	ND	ND	NA	11	
Potassium	1580.0	1480	6	1100	
Sodium	2100.0	2090	0	1100	

DISSOLVED METALS EPA 6010C MS/MSD QUALITY CONTROL

Date Analyzed:	12-2-13
----------------	---------

Matrix:	Water
Units:	ug/L (ppb)

Lab ID: 11-200-01

Analyte	Spike Level	MS	Percent Recovery	MSD	Percent Recovery	RPD	Flags
Calcium	22200	44900	86	45300	87	1	
Iron	22200	20400	92	20200	91	1	
Magnesium	22200	31200	91	31200	91	0	
Manganese	1110	1150	104	1160	104	1	
Potassium	22200	22400	94	22400	94	0	
Sodium	22200	21700	88	21500	87	1	

6

NITRATE (as Nitrogen) EPA 353.2

Matrix: Water Units: mg/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	Pitman Well					
Laboratory ID:	11-222-01					
Nitrate	0.13	0.050	EPA 353.2	12-2-13	12-2-13	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

NITRATE (as Nitrogen) EPA 353.2 QUALITY CONTROL

Matrix: Water Units: mg/L

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB1202W1					
Nitrate	ND	0.050	EPA 353.2	12-2-13	12-2-13	

				Source	Percent	Recovery			
Analyte	Result		Spike Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE									
Laboratory ID:	11-22	22-01							
	ORIG	DUP							
Nitrate	0.134	0.126	NA	NA	NA	NA	6	16	
MATRIX SPIKE									
Laboratory ID:	11-22	22-01							
	Μ	S	MS		MS				
Nitrate	2.2	26	2.00	0.134	106	84-119	NA	NA	
SPIKE BLANK									
Laboratory ID:	SB12	02W1							
	S	В	SB		SB				
Nitrate	2.1	10	2.00	NA	105	86-114	NA	NA	

AMMONIA (as Nitrogen) SM 4500-NH₃ D

Matrix: Water Units: mg NH3-N/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	Pitman Well					
Laboratory ID:	11-222-01					
Ammonia	ND	0.050	SM 4500-NH3 D	12-3-13	12-3-13	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

AMMONIA (as Nitrogen) SM 4500-NH₃ D QUALITY CONTROL

Matrix: Water Units: mg NH3-N/L

			Date	Date	
Result	PQL	Method	Prepared	Analyzed	Flags
MB1203W1					
ND	0.050	SM 4500-NH3 D	12-3-13	12-3-13	
	Result MB1203W1 ND	Result PQL MB1203W1 0.050	Result PQL Method MB1203W1	Result PQL Method Prepared MB1203W1 0.050 SM 4500-NH3 D 12-3-13	Date Date Result PQL Method Prepared Analyzed MB1203W1 0.050 SM 4500-NH3 D 12-3-13 12-3-13

				Source	Percent	Recovery		RPD	
Analyte	Res	Result		Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE									
Laboratory ID:	11-17	5-01							
	ORIG	DUP							
Ammonia	ND	ND	NA	NA	NA	NA	NA	11	
MATRIX SPIKE									
Laboratory ID:	11-17	5-01							
	MS	S	MS		MS				
Ammonia	4.4	7	5.00	ND	89	83-100	NA	NA	
SPIKE BLANK									
Laboratory ID:	SB120)3W1							
	SE	3	SB		SB				
Ammonia	4.5	3	5.00	NA	91	86-99	NA	NA	

SULFATE ASTM D516-07

Matrix: Water Units: mg/L

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Client ID:	Pitman Well					
Laboratory ID:	11-222-01					
Sulfate	19	5.0	ASTM D516-07	12-5-13	12-5-13	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

SULFATE ASTM D516-07 QUALITY CONTROL

Matrix: Water Units: mg/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB1205W1					
Sulfate	ND	5.0	ASTM D516-07	12-5-13	12-5-13	

				Source	Percent	Recovery		RPD	
Analyte	Res	Result		Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE									
Laboratory ID:	11-21	8-01							
	ORIG	DUP							
Sulfate	84.3	91.6	NA	NA	NA	NA	8	10	
MATRIX SPIKE									
Laboratory ID:	11-21	8-01							
	M	S	MS		MS				
Sulfate	18	6	100	84.3	102	82-123	NA	NA	
SPIKE BLANK									
Laboratory ID:	SB120	D5W1							
	SI	В	SB		SB				
Sulfate	9.7	79	10.0	NA	98	91-114	NA	NA	

CONDUCTIVITY EPA 120.1

Matrix: Water Units: Micro-mho

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
Client ID:	Pitman Well					
Laboratory ID:	11-222-01					
Conductivity	200	2.0	EPA 120.1	11-27-13	11-27-13	

OnSite Environmental, Inc. 14648 NE 95th Street, Redmond, WA 98052 (425) 883-3881

CONDUCTIVITY EPA 120.1 QUALITY CONTROL

Matrix: Water Units: Micro-mho

				Source	Percent	Recovery			
Analyte	Res	sult	Spike Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE									
Laboratory ID:	11-22	22-01							
	ORIG	DUP							
Conductivity	195	195	NA	NA	NA	NA	0		

CHLORIDE SM 4500-CI E

Matrix: Water Units: mg/L

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	Pitman Well					
Laboratory ID:	11-222-01					
Chloride	5.4	2.0	SM 4500-CI E	12-5-13	12-5-13	

CHLORIDE SM 4500-CI E QUALITY CONTROL

Matrix: Water Units: mg/L

Analyte	Result	PQL	Method	Date Prepared	Date Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB1205W1					
Chloride	ND	2.0	SM 4500-CI E	12-5-13	12-5-13	

				Source	Percent	Recovery		RPD	
Analyte	Result		Spike Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE									
Laboratory ID:	11-22	2-01							
	ORIG	DUP							
Chloride	5.40	5.09	NA	NA	NA	NA	6	11	
MATRIX SPIKE									
Laboratory ID:	11-22	2-01							
	MS	S	MS		MS				
Chloride	58.	.9	50.0	5.40	107	94-126	NA	NA	
SPIKE BLANK									
Laboratory ID:	SB120)5W1							
	SE	3	SB		SB				
Chloride	52.	.0	50.0	NA	104	94-124	NA	NA	

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical _____
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a Sulfuric acid/Silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in method 8260C, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

Ζ-

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052	Turnaround Request (in working days)				Laboratory Number:											11-222								
Phone: (425) 883-3881 • www.onsite-env.com Company: Goider Project Number: 1300649 - 007 Project Name: Port Ganble LOSS Project Manager: Chris Pitre Sampled by: A. Austreng	Same	(Check One Day /s dard (7 Days) analysis 5 D (other)) 1 Day 3 Days ays)	er of Containers	1-HCID	H-Gx/BTEX	4-GX	H-DX	is 8260C	nated Volatiles 8260C	ilatiles 8270D/SIM w-level PAHs) 8270D/SIM (low-level)	3082A	chlorine Pesticides 8081B	phosphorus Pesticides 8270D/SIM	ated Acid Herbicides 8151A	CRA Metals/ MTCA Metals (circle one)	<i>detals</i>	bil and grease) 1664A	solved Metals (see comments)	itrate as N	moria as N	ul fate	cific Conductance	sture
.ab ID Sample Identification	Date Sampled	Time Sampled	Matrix	Numbe	NWTPI	NWTPH	NWTPI	NWTPI	Volatile	Haloge	Semivo (with lo PAHs 8	PCBs 8	Organo	Organo	Chlorin	Total R	TCLP N	HEM (0	0.*	5	A	S	spe	% Moi
1 Pitman Well	11/24/13	1310	Hao	4								-							\times	×	×	×	×	-
																								+
																								+
																								_
Cignoture	0	mpany		1000		Data			Timo	_	C	ammor	nte/Si	locial	Inetr	uction	10	1.1.1						
Relinquished Arthur Received	>	Golde	DE			11/	57	13	0	920	0	Both Filt Foll	fle	w/	HI Pie	vo	3 P	ores ana	ien lyz	nation i.e. i	ve For	is the	fiel.	£

Data Package: Level III 🗌 Level IV 🗌

Reviewed/Date

Relinquished

Reviewed/Date

Received

Chromatograms with final report

% Moisture

Electronic Data Deliverables (EDDs) -

Established in 1960, Golder Associates is a global, employee-owned organization that helps clients find sustainable solutions to the challenges of finite resources, energy and water supply and management, waste management, urbanization, and climate change. We provide a wide range of independent consulting, design, and construction services in our specialist areas of earth, environment, and energy. By building strong relationships and meeting the needs of clients, our people have created one of the most trusted professional services organizations in the world.

- Africa Asia Australasia Europe North America + 1 800 275 3281 South America + 56 2 2616 2000
- + 27 11 254 4800
 - + 852 2562 3658
 - + 61 3 8862 3500 + 356 21 42 30 20

solutions@golder.com www.golder.com

Engineering Earth's Development, Preserving Earth's Integrity

Golder, Golder Associates and the GA globe design are trademarks of Golder Associates Corporation

Golder Associates Inc. 18300 NE Union Hill Road, Suite 200 Redmond, WA 98052 USA Tel: (425) 883-0777 Fax: (425) 882-5498

Memorandum

www.geoengineers.com

1101 South Fawcett Avenue, Suite 200, Tacoma, Washington 98402, Telephone: 253.383.4940

То:	Sue Allison/Olympic Property Group I, LLC
From:	Fiona McNair and Lisa Berntsen
Date:	February 28, 2014
File:	2378-044-03
Subject:	REVISED - Evaluation of Impacts to Water Quantity on Wetlands Port Gamble Large On-Site Sewage System Port Gamble, Washington

GeoEngineers, Inc. (GeoEngineers) has read and reviewed the Port Gamble Upland Large On-Site Sewage System (LOSS) report prepared by Golder Associates (2014) for Olympic Property Group (OPG) and corresponded with Al Fure of Triad and others of the design team multiple times about the alternatives and revised treatment scenarios. The question currently posed to GeoEngineers has to do with the potential impact of added effluent volume on wetlands and streams north, east and south of the proposed LOSS. This is based upon siting the LOSS in the proposed footprint bordering the western property boundary and treating the effluent prior to its reaching the drainfield to protect an off-site drinking water well and on-site wetlands and streams. Much of this is described in the Golder report (2014).

Currently, the existing Port Gamble wastewater treatment plant discharges treated effluent into Hood Canal, which has caused water quality problems in the past, including shellfish closures (Golder, 2014). The proposed LOSS will receive effluent from the redeveloped area, and the treatment plant discharge will be decommissioned, thus eliminating potential water quality impacts to Hood Canal from the wastewater treatment plant discharges.

Septic system effluent treated to meet Washington State Department of Health standards will enter the environment through perforated pipes within the drainfield. The primary pollutants of concern in septic tanks are metals, polycyclic aromatic hydrocarbons (PAHs), nutrients (e.g., nitrogen and phosphorus) and microbes/pathogens. The effluent from the septic system will be treated for nutrients prior to it being released to the drainfield. The focus of this memo is the potential for impacts of increased effluent volume on the adjacent wetlands and streams.

The LOSS configuration as identified in the Site Risk Survey and Hydrogeologic Report describes a flow of effluent from the northern quadrant of the system in a 'radial' pattern with the majority of the new effluent flowing to the north and east. The three wetlands (D, G and H) immediately east of the LOSS footprint location are approximately 600 feet from the edge of the drainfield and are at, or immediately below, the groundwater level (approximately 195 to 210 feet) where seeps emerge from the slope. A seep north and east of the LOSS footprint location flows at a rate of 45 gallons per minute (gpm) (0.01 cubic feet per second [cfs]). Much of this flow is captured by Stream 3 located immediately northeast of this seep (GeoEngineers, 2013). Another seep, identified within Wetland D has a flow measured at 2 to 3 gpm (Golder, 2014). Based on calculations made for the LOSS footprint location, flows along the eastern boundary are anticipated to be 35 gpm extending across an aquifer width of 2,000 feet for an average flow rate of 0.02 gpm per linear foot of aquifer (Golder, 2014).

FLOW ATTENUATION BY ADJACENT WETLANDS, STREAMS AND RIPARIAN AREAS

Impacts from Increased Flow Rates/Hydrology Impacts

As described in the Golder (2014) report the closest distance of the LOSS to wetlands and streams is 600 feet to the east. Based on calculations made for the LOSS footprint location, flows along the eastern boundary are anticipated to be 35 gpm extending across an aquifer width of 2,000 feet for an average flow rate of 0.02 gpm per linear foot of aquifer (Golder, 2014). Recall, that under the radial flow not all the LOSS volume will be directed to the east. Some volume will flow north and west. Under current conditions, a seep along the eastern slope flows into Wetland D at a rate of 2 to 3 gpm (Golder, 2014) and groundwater surfaces at numerous locations along the eastern slope at lower flow rates than the seep into Wetland D. Flow rates of these seeps have not been measured; however, based on field observations it is assumed these seeps flow at approximately 25 to 50 percent of the Wetland D seep (e.g., 0.5 to 1.5 gpm), then an increase in flow of 0.02 gpm per linear foot of aquifer would represent an increase in flow rate of 0.06 to 4 percent across the eastern slope. This increase in water supply to the adjacent wetlands and streams is not anticipated to result in negative impacts both because the increase would be relatively small and the increase would be spread across a large area and the adjacent landscape is extensive, and undeveloped. The increase in hydrologic inputs may cause a small expansion of adjacent wetlands (spatially) and would likely result in a minor increase in the frequency and duration of saturation and/or inundation. The seep northeast of the LOSS footprint flowing at a rate of 45 gpm would experience a 0.05 percent increase in flow, which is an insignificant amount especially considering that Stream 3 flows into adjacent wetlands, which absorb and moderate its flows. Within the project area and to the extent of the property line, wetland habitat was not identified, west of the LOSS. Therefore there will be no onsite hydrology impacts west of the LOSS.

CONCLUSIONS

Anticipated flows from the LOSS drainfield effluent are at a flow rate of 0.02 gpm per linear foot across the aquifer. Based on calculations made for the proposed LOSS footprint location, flows along the eastern boundary are anticipated to be 35 gpm extending across an aquifer width of 2,000 feet for an average flow rate of 0.02 gpm per linear foot of aquifer (Golder, 2014). Under current conditions, measured seeps north and east of the LOSS flows at rates of 2 to 3 gpm (Wetland D), 45 gpm (Stream 3) (Golder, 2014) and 0.5 to 1.5 gpm (assumed range of flows across the eastern slope). The anticipated increase in flow from the LOSS facility of 0.02 gpm per linear foot of aquifer, represents an increase of 0.05, 0.65, 1, 1.35, and 4 percent for the five seep rates listed above. This increase in supply of water to the adjacent wetlands and streams is not anticipated to result in negative impacts because the increase is relatively small and it would be spread across a large forested and undeveloped area. The increase in hydrologic inputs may cause minor increases in the frequency and duration of saturation and/or inundation and some expansion of adjacent wetlands. However, the minor increase in flow would not be anticipated to result in significant impacts.

LIMITATIONS

We have prepared this memorandum for Olympic Property Group for the proposed Port Gamble Property Large On-Site Sewage System. Olympic Property Group may distribute copies of this report to its contractors, authorized agents and regulatory agencies as may be required for the project.

Memorandum to Olympic Property Group I, LLC February 28, 2014 Page 3

Within the limitations of scope, schedule and budget, our services have been executed in accordance with generally accepted practices in the field of wetland science in this area at the time this report was prepared. The conclusions, recommendations and opinions presented in this report are based on our professional knowledge, judgment and experience. No warranty, express or implied, applies to our services and this report.

REFERENCES

- Camargo, J.A. and Alonso, A. (2007), "Inorganic nitrogen pollution in aquatic ecosystems: causes and consequences." 2007, http://www.eoearth.org/view/article/153841.
- Camargo, J.A. and Alonso, A. (2006), "Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: A global assessment," in Environment International 32, 2006, pp. 831–849.
- GeoEngineers, Inc. (2013), Report to Pope Resources, "Wetland and Stream Delineation Report, Port Gamble Redevelopment Plan, Kitsap County, Washington," GEI File No. 2378-044-02, January 8, 2013.
- Golder Associates, Inc. (2014), Report to Olympic Property Group I, LLC February 28, 2014. "Port Gamble Upland Loss Site Risk Survey and Hyrdrogeologic Report. Revised. DOH #2012-035."

FM:LAB:tt:lc

Copyright© 2014 by GeoEngineers, Inc. All rights reserved.